Home Physical Sciences Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
Article
Licensed
Unlicensed Requires Authentication

Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy

  • Chuanzhong Li EMAIL logo and Tao Song
Published/Copyright: March 16, 2016

Abstract

With the extended logarithmic flow equations and some extended Vertex operators in generalized Hirota bilinear equations, extended bigraded Toda hierarchy (EBTH) was proved to govern the Gromov-Witten theory of orbiford cNM in literature. The generating function of these Gromov-Witten invariants is one special solution of the EBTH. In this article, the multifold Darboux transformations and their determinant representations of the EBTH are given with two different gauge transformation operators. The two Darboux transformations in different directions are used to generate new solutions from known solutions which include soliton solutions of (N, N)-EBTH, i.e. the EBTH when N=M. From the generation of new solutions, we can find the big difference between the EBTH and the extended Toda hierarchy (ETH). Also, we plotted the soliton graphs of the (N, N)-EBTH from which some approximation analysis is given. From the analysis on velocities of soliton solutions, the difference between the extended flows and other flows are shown. The two different Darboux transformations constructed by us might be useful in Gromov-Witten theory of orbiford cNM.


Corresponding author: Chuanzhong Li, Department of Mathematics, Ningbo University, Ningbo, 315211, China, E-mail:

Acknowledgments

This work is supported by the Zhejiang Provincial Natural Science Foundation under Grant no. LY15A010004, the National Natural Science Foundation of China under Grant no. 11571192, the Natural Science Foundation of Ningbo under Grant no. 2015A610157 and the K. C. Wong Magna Fund in Ningbo University. The author would like to thank Prof. J. S. He for his helpful suggestions.

References

[1] M. Toda, J. Phys. Soc. Jpn. 23, 501 (1967).10.1143/JPSJ.23.501Search in Google Scholar

[2] K. Ueno and K. Takasaki, in: Group Representations and Systems of Differential Equations 4 (Ed. K. Okamoto), North-Holland, Amsterdam 1984.Search in Google Scholar

[3] Y. Zhang, J. Geom. Phys. 40, 215 (2002).10.1007/BF03057993Search in Google Scholar

[4] R. Dijkgraaf and E. Witten, Nucl. Phys. B 342, 486 (1990).10.1016/0550-3213(90)90324-7Search in Google Scholar

[5] E. Witten, Surv. Diff. Geom. 1, 243 (1991).Search in Google Scholar

[6] B. A. Dubrovin, in: Integrable Systems and Quantum Groups Lecture Notes in Math. 1620 (Eds. R. Donagi, B. A. Dubrovin, E. Frenkel), Springer, Berlin 1996, p. 1.Search in Google Scholar

[7] G. Carlet, B. Dubrovin, and Y. Zhang, Mosc. Math. J. 4, 313 (2004).10.17323/1609-4514-2004-4-2-313-332Search in Google Scholar

[8] B. Dubrovin and Y. Zhang, arXiv: math/0108160 [math.DG] (2001) (online-only).Search in Google Scholar

[9] E. Getzler, arXiv: math/0108108v1 [math.AG] (2001) (online-only).Search in Google Scholar

[10] T. Eguchi and S. K. Yang, Mod. Phys. Lett. A 9, 2893 (1994).10.1142/S0217732394002732Search in Google Scholar

[11] G. Carlet, SISSA, Ph.D. thesis (2003).Search in Google Scholar

[12] G. Carlet, J. Phys. A 39, 9411 (2006).10.1088/0305-4470/39/30/003Search in Google Scholar

[13] T. Milanov and H. H. Tseng, Mathematik 622, 189 (2008).10.1515/CRELLE.2008.069Search in Google Scholar

[14] C. Z. Li, J. S. He, K. Wu, and Y. Cheng, J. Math. Phys. 51, 043514 (2010).10.1063/1.3316125Search in Google Scholar

[15] G. Carlet and J. van de Leur, J. Phys. A 46, 405205 (2013), arxiv:1304.1632.10.1088/1751-8113/46/40/405205Search in Google Scholar

[16] C. Z. Li, J. S. He, and Y. C. Su, J. Math. Phys. 53, 013517 (2012).10.1063/1.3681205Search in Google Scholar

[17] C. Z. Li, J. Phys. A 44, 255201 (2011), arXiv:1011.4684.10.1088/1751-8113/44/25/255201Search in Google Scholar

[18] C. Z. Li and J. S. He, Rev. Math. Phys. 24, 1230003 (2012).10.1142/S0129055X12300038Search in Google Scholar

[19] C. Z. Li and J. S. He, Chin. Ann. Math., Ser. B, 34, 865 (2013).10.1007/s11401-013-0804-xSearch in Google Scholar

[20] Y. S. Li, X. S. Gu, and M. R. Zou, Acta Math. Sinica Eng. Ser. 3, 143 (1985).Search in Google Scholar

[21] V. B. Matveev, Lett. Math. Phys. 3, 217 (1979).10.1007/BF00405296Search in Google Scholar

[22] V. B. Matveev and M. A. Salle, Darboux Transfromations and Solitons, Springer-Verlag, Berlin 1991.10.1007/978-3-662-00922-2Search in Google Scholar

[23] V. M. Babich, V. B. Matveev, and M. A. Salle, Zap. Nauchn. Sem. LOMI, 145, 34 (1985).Search in Google Scholar

[24] W. Oevel, in: Nonlinear Physics: Theory and Experiment (Eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli), World Scientific Publishing, Singapore 1996, p. 233.Search in Google Scholar

[25] M. Adler and P. V. Moerbeke, Int. Math. Res. Not. 18, 935 (2001).10.1155/S1073792801000460Search in Google Scholar

[26] J. S. He, Y. S. Li, and Y. Cheng, Chin. Ann. Math. 23B, 475 (2002).10.1142/S0252959902000444Search in Google Scholar

[27] J. S. He, L. Zhang, Y. Cheng, and Y. S. Li, Sci. Chin. A 12, 1867 (2006).Search in Google Scholar

[28] C. Z. Li, J. S. He, and K. Porsezian, Phys. Rev. E 87, 012913 (2013).Search in Google Scholar

Received: 2016-1-14
Accepted: 2016-2-15
Published Online: 2016-3-16
Published in Print: 2016-4-1

©2016 by De Gruyter

Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0011/pdf
Scroll to top button