Abstract
This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are “occupied once” (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the “configuration” space of fundamental fields, or on another, as yet elusive, fundamental local basis.
References
[1] E. Segrè, From Falling Bodies to Radio Waves – Classical Physicists and Their Discoveries, Freeman, New York 1984.10.1119/1.14374Search in Google Scholar
[2] M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York 1966.Search in Google Scholar
[3] H. D. Zeh, Eur. Phys. J. H36, 147 (2011).Search in Google Scholar
[4] S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, et al, Nature 455, 510 (2008) – cf. also Fig. 3.14 in [11].10.1038/nature07288Search in Google Scholar
[5] H. D. Zeh, NeuroQuantology 11, 97 (2013) – arxiv:1211.0196.10.14704/nq.2013.11.1.645Search in Google Scholar
[6] H. D. Zeh, Found. Phys. 1, 69 (1970).10.1007/BF00708656Search in Google Scholar
[7] E. Joos and H. D. Zeh, Z. Phys. B59, 223 (1985).10.1007/BF01725541Search in Google Scholar
[8] W. H. Zurek, Physics Today 44, 36 (1991).10.1063/1.881293Search in Google Scholar
[9] W. H. Zurek, Progr. Theor. Phys. 89, 281 (1993).10.1143/ptp/89.2.281Search in Google Scholar
[10] L. Diósi and C. Kiefer, Phys. Rev. Lett. 85, 3552 (2000).10.1103/PhysRevLett.85.3552Search in Google Scholar
[11] E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, et al., Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin 2003, Chapters 1–4.10.1007/978-3-662-05328-7Search in Google Scholar
[12] M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, Springer, Berlin 2007.Search in Google Scholar
[13] H. D. Zeh, The Physical Basis of the Direction of Time, 5th ed., Springer, Berlin 2007.Search in Google Scholar
[14] H. D. Zeh, in: The Arrow of Time (Eds. L. Mersini-Houghton, R. Vaas), Springer, Berlin 2012, p. 205.10.1007/978-3-642-23259-6_11Search in Google Scholar
[15] H. D. Zeh, Found. Phys. 40, 1476 (2010).10.1007/s10701-009-9383-9Search in Google Scholar
[16] P. Byrne, The Many Worlds of Hugh Everett III, Oxford UP, Oxford 2010, Chapter 27.Search in Google Scholar
[17] S. Tomonaga, Progr. Theor. Phys. 1, 27 (1946).10.1143/PTP.1.27Search in Google Scholar
[18] H. D. Zeh, Phys. Lett. A309, 329 (2003).10.1016/S0375-9601(03)00209-3Search in Google Scholar
[19] F. J. Dyson, Phys. Rev. 75, 486 (1949).10.1103/PhysRev.75.486Search in Google Scholar
[20] D. Giulini, C. Kiefer, and H. D. Zeh, Phys. Lett. A199, 291 (1995).10.1016/0375-9601(95)00128-PSearch in Google Scholar
[21] C. Joas and C. Lehner, Stud. Hist. Phil. Mod. Phys. 40, 338 (2009).10.1016/j.shpsb.2009.06.007Search in Google Scholar
[22] W. H. Zurek, Nature Phys. 5, 181 (2009).10.1038/nphys1202Search in Google Scholar
[23] C. Rovelli, Found. Phys. 44, 91 (2014).10.1007/s10701-013-9768-7Search in Google Scholar
[24] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge UP, Cambridge 1983.10.1017/CBO9780511622632Search in Google Scholar
[25] R. E. Peierls and J. Joccoz, Proc. Phys. Soc. London A70, 381 (1957).10.1088/0370-1298/70/5/309Search in Google Scholar
[26] H. D. Zeh, Nucl. Phys. 202, 38 (1967).10.1007/BF01331196Search in Google Scholar
[27] C. Kiefer, Quantum Gravity, 3rd ed., Oxford UP, Oxford 2012.10.1093/oxfordhb/9780199298204.003.0024Search in Google Scholar
[28] H. D. Zeh, Phys. Lett. A116, 9 (1986).10.1016/0375-9601(86)90346-4Search in Google Scholar
[29] H. D. Zeh, in: Springer Handbook of Spacetime Physics (Eds. A. Ashtekar, V. Petkov) Springer, Berlin 2013, p. 185.10.1007/978-3-642-41992-8_10Search in Google Scholar
[30] C. Kiefer and D. Polarski, Adv. Sci. Lett. 2, 164 (2009).10.1166/asl.2009.1023Search in Google Scholar
[31] M. Tegmark, Report, arxiv:0905.1283.Search in Google Scholar
[32] M. Tegmark, Phys. Rev. D85, 123517 (2012).10.1103/PhysRevD.85.129903Search in Google Scholar
Article note:
Free and extended translation of my unpublished German text “Die sonderbare Geschichte von Teilchen und Wellen”. By the term “(hi)story” I tried to catch the double-meaning of the German word “Geschichte”.
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure