Abstract
The electron paramagnetic resonance (EPR) parameters [i.e. g factors gi (i=x, y, z) and hyperfine structure constants Ai] and the local lattice structure for the Cu2+ centre in Tl2Zn(SO4)2·6H2O (TZSH) crystal were theoretically investigated by utilising the perturbation formulae of these parameters for a 3d9 ion under rhombically elongated octahedra. In the calculations, the admixture of d orbitals in the ground state and the ligand orbital and spin-orbit coupling interactions are taken into account based on the cluster approach. The theoretical EPR parameters show good agreement with the observed values, and the Cu2+–H2O bond lengths are obtained as follows: Rx≈1.98 Å, Ry≈2.09 Å, Rz≈2.32 Å. The results are discussed.
Acknowledgements
This work was financially supported by Chinese Natural Science Foundation (Grant Nos. 11365017 and 11465015).
References
[1] K.V. Narasimhulu and J. L. Rao, Spectrochim. Acta A 53, 2605 (1997).10.1016/S1386-1425(97)00196-0Suche in Google Scholar
[2] R. H. Borcherts and C. Kikuchi, J. Chem. Phys. 40, 2270 (1964).10.1063/1.1725504Suche in Google Scholar
[3] P. S. Rao, Spectrochim. Acta A 52, 1127 (1996).10.1016/0584-8539(95)01637-6Suche in Google Scholar
[4] R. S. Saraswat and G. C. Upreti, Chem. Phys. 23, 97 (1977).10.1016/0301-0104(77)89047-2Suche in Google Scholar
[5] S. K. Misra, J. Sun, Phys. Rev. B 44, 10333 (1991).10.1103/PhysRevD.44.110Suche in Google Scholar
[6] S. Ravi and P. Subramanian, Physica B 393, 275 (2007).10.1016/j.physb.2007.01.014Suche in Google Scholar
[7] R. Kripal, M. G. Misra, and P. Dwivedi, Appl. Magn. Res. 42, 251 (2012).10.1007/s00723-011-0286-5Suche in Google Scholar
[8] R. Kripal and M. G. Misra, Appl. Magn. Res. 44, 759 (2013).10.1007/s00723-013-0446-xSuche in Google Scholar
[9] S. K. Hoffmann, J. Goslar, W. Hilczer, and M. A. Augustyniak-Jablokow, J. Phys.: Condens. Matter 13, 707 (2001).10.1088/0953-8984/13/33/323Suche in Google Scholar
[10] R. M. Krishna, L. Rao, V. V. Bhaskar, and S. V. J. Lakshman, Phys. Stat. Sol. B 171, 227 (1992).10.1002/pssb.2221710124Suche in Google Scholar
[11] Petrashen, V. E., Yablokov, Y. V., and Davidovich, R. L. Phys. Stat. Solids. B 101, 117 (1980).10.1002/pssb.2221010112Suche in Google Scholar
[12] W. C. Zheng, D. T. Zhang, P. Su, and H. G. Liu, Spectrochim. Acta A 81, 548 (2011).10.1016/j.saa.2011.06.049Suche in Google Scholar PubMed
[13] A. Abragam and B. Bleaney, Clarendon Press, Oxford, UK, 1970.Suche in Google Scholar
[14] H. M. Zhang, S. Y. Wu, M. Q. Kuang, and Z. H. Zhang, J. Phys. Chem. Solids 73, 846 (2012).Suche in Google Scholar
[15] S. Y. Wu, L. H. Wei, Z. H. Zhang, and X. F. Wang, Spectrochim. Acta A 71, 2023 (2009).10.1016/j.saa.2008.07.041Suche in Google Scholar PubMed
[16] Y. K. Cheng, S. Y. Wu, C. C. Ding, and L. J. Zhang, Physica C 509, 5 (2015).10.1016/j.physc.2014.11.007Suche in Google Scholar
[17] H. M. Zhang, W. B. Xiao, and X. Wan, Eur. Phys. J. D 68, 313 (2014).Suche in Google Scholar
[18] H. Euler, B. Barbier, S. Klumpp, and A. Kirfel, Z. Kristallogr. 215, 473 (2000).10.1515/ncrs-2000-0408Suche in Google Scholar
[19] Y. Yerli, S. Kazan, O. Yalçın, and B. Aktaş, Spectrochim. Acta A 64, 642 (2006).10.1016/j.saa.2005.07.068Suche in Google Scholar
[20] D. T. Zhang, L. He, W. Q. Yang, and W. C. Zheng, Physica B 405, 3642 (2010).10.1016/j.physb.2010.05.085Suche in Google Scholar
[21] D. J. Newman, and B. Ng, Rep. Prog. Phys. 52, 699 (1989).10.1088/0034-4885/52/6/002Suche in Google Scholar
[22] H. M. Zhang, W. B. Xiao, and X. Wan, Physica B 449, 225 (2014).10.1016/j.physb.2014.05.036Suche in Google Scholar
[23] S. Y. Wu, X. Y. Gao, and H. N. Dong, J. Magn. Magn. Mat. 301, 67 (2006).Suche in Google Scholar
[24] W. L. Yu, X. M. Zhang, L. X. Yang, and B. Q. Zen, Phys. Rev. B 50, 6756 (1994).Suche in Google Scholar
[25] H. N. Dong, S. Y. Wu, X. R. Liu, and W. D. Chen, Z. Naturforsch. 60a, 373 (2005).10.1515/zna-2005-0509Suche in Google Scholar
[26] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).10.1063/1.1733573Suche in Google Scholar
[27] C. K. Jorgensen, Pergamon Press, Oxford, UK, 1964.Suche in Google Scholar
[28] J. S. Griffith, Cambridge Univ. Press, UK, 1964.Suche in Google Scholar
[29] E. K. Hodgson and I. Fridovich, Biochem. Biophys. Res. Commun. 54, 270 (1973).10.1016/0006-291X(73)90918-2Suche in Google Scholar
[30] H. N. Dong, S. Y. Wu, and P. Li, Phys. Stat. Sol. B 241, 1935 (2004).10.1002/pssb.200402033Suche in Google Scholar
[31] A. Abragam and M. H. L. Pryce, Proc. R. Soc. Lond. A 206, 173 (1951).10.1098/rspa.1951.0063Suche in Google Scholar
[32] B. Karabulut and A. Tufan, Spectrochim. Acta A 65, 285 (2006).10.1016/j.saa.2005.10.044Suche in Google Scholar
[33] R. Kripal, M. Bajpai, M. Maurya, and H. Govind, Physica B 403, 3693 (2008).10.1016/j.physb.2008.06.019Suche in Google Scholar
[34] M. Q. Kuang, S. Y. Wu, and H. M. Zhang, Optik 123, 1601 (2012).10.1016/j.ijleo.2011.08.032Suche in Google Scholar
[35] Y. P. Huang, L. J. Wang, and W. L. Feng, 164, 183 (2009).10.1080/10420150802318703Suche in Google Scholar
[36] H. M. Zhang, W. B. Xiao, and X. Wan, Radiat. Eff. Defect. Solids 169, 603 (2014).Suche in Google Scholar
[37] M. J. Riley and M. A. Hitchman, Chem. Phys. 102, 11 (1986).10.1016/0301-0104(86)85113-8Suche in Google Scholar
[38] R. Murugesan and S. Subramanian, J. Magn. Reson. 36, 389 (1979).10.1016/0022-2364(79)90115-XSuche in Google Scholar
[39] R. Tapramaz, B. Karabulut, and F. Koksal, J. Phys. Chem. Solids 61, 1367 (2000).10.1016/S0022-3697(00)00024-XSuche in Google Scholar
[40] J. L. Pascual, B. Savoini, and R. Gonzalez, Phys. Rev. B 70, 045109 (2004).10.1103/PhysRevB.70.045109Suche in Google Scholar
[41] B. R. McGarvey, J. Phys. Chem. 71, 51 (1967).10.1021/j100860a007Suche in Google Scholar
[42] C. Y. Li, Y. Huang, and X. M. Zheng, Physica B 456, 125 (2015).Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure
Artikel in diesem Heft
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure