Abstract
Energy bands and density of states (DOS) of mixed molybdenum dichalcogenides like MoS2, MoSeS, MoSe2, MoTe2, MoTeS, and MoTe0.5S1.5 are reported for the first time using the Tran–Blaha modified Becke–Johnson potential within full potential-linearised augmented plane wave technique. From the partial DOS, a strong hybridisation between the Mo-d and chalcogen-p states is observed below the Fermi energy EF. In addition, the dielectric constants, absorption coefficients, and refractivity spectra of these compounds have also been deduced. The integrated absorption coefficients derived from the frequency-dependent absorption spectra within the energy range of 0–4.5 eV show a possibility of using molybdenum dichalcogenides, particularly MoTe0.5S1.5, in solar cell applications. Birefringence and degree of anisotropy are also discussed using the data on refractivity and imaginary components of the dielectric constant.
Acknowledgments
The authors are grateful to Prof. Peter Blaha for providing the Wien2k code. U.A. is thankful to Department of Science and Technology, New Delhi, India for support in the form of INSPIRE fellowship.
References
[1] H. P. Komsa and A. V. Krasheninnikov, J. Phys. Chem. 3, 3652 (2012).10.1021/jz301673xSearch in Google Scholar
[2] D. Yoffee and J. A. Wilson, Adv. Phys. 18, 193 (1969).10.3323/jcorr1954.18.5_193Search in Google Scholar
[3] R. H. Friend and A. D. Yoffe, Adv. Phys. 36, 1 (1987).10.1080/00018738700101951Search in Google Scholar
[4] H. Jiang, J. Phys. Chem. C 116, 7664 (2012).10.1021/jp300079dSearch in Google Scholar
[5] E. Revolinsky and D. Beerntsen, J. Appl. Phys. 35, 2086 (1964).10.1063/1.1702795Search in Google Scholar
[6] S. K. Srivastava, T. K. Mandal, and B. K. Samantaray, Synth. Met. 90, 135 (1997).10.1016/S0379-6779(97)81262-3Search in Google Scholar
[7] M. K. Agarwal, P. O. Patel, L. T. Talele, and D. Lakshminarayana, Phys. Stat. Solidi A 90, K107 (1985).10.1002/pssa.2210900167Search in Google Scholar
[8] S. K. Srivastava and D. Palit, Sol. Stat. Ionics 176, 513 (2005).10.1016/j.ssi.2004.06.020Search in Google Scholar
[9] J. Chang, S. Larentis, E. Tutuc, L. F. Register, and S. K. Banerjee, Appl. Phys. Lett. 104, 141603-1 (2014).10.1063/1.4870767Search in Google Scholar
[10] H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. Lett. 109, 035503-01 (2012).10.1103/PhysRevLett.109.035503Search in Google Scholar
[11] A. Kumar and P. K. Ahluwalia, Eur. Phys. J. B 85, 186-1 (2012).10.1140/epjb/e2012-30070-xSearch in Google Scholar
[12] H. Reshak and S. Auluck, Phys. Rev. B 71, 155114-1 (2005).10.1103/PhysRevB.71.155114Search in Google Scholar
[13] W. Y. Liang, J. Phys. C 6, 551 (1973).10.1088/0022-3719/6/3/018Search in Google Scholar
[14] A. R. Beal, J. C. Knights, and W. Y. Liang, J. Phys. C 5, 3540 (1972).10.1088/0022-3719/5/24/016Search in Google Scholar
[15] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, User’s Guide, WIEN2k_14.2 Code, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria 2013.Search in Google Scholar
[16] F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401-1 (2009).10.1103/PhysRevLett.102.226401Search in Google Scholar PubMed
[17] A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101-1 (2006).10.1063/1.2213970Search in Google Scholar
[18] D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).10.1103/PhysRevA.39.3761Search in Google Scholar PubMed
[19] J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111-1 (2013).10.1063/1.4774090Search in Google Scholar
[20] A. R. Beal and H. P. Hughes, J. Phys. C 12, 881 (1979).10.1088/0022-3719/12/5/017Search in Google Scholar
[21] K. K. Kam and B. Parkinson, J. Phys. Chem. 86, 463 (1982).10.1021/j100393a010Search in Google Scholar
[22] T. Buker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voβ, P. Krüger, A. Mazur, and J. Pollmann, Phys. Rev. B 64, 235305-1 (2001).10.1103/PhysRevB.64.235305Search in Google Scholar
[23] U. Ahuja, A. Dashora, H. Tiwari, D. C. Kothari, and K. Venugopalan, Comp. Mat. Sci. 92, 451 (2014).10.1016/j.commatsci.2014.06.005Search in Google Scholar
[24] N. L. Heda, A. Dashora, A. Marwal, Y. Sharma, S. K. Srivastava, G. Ahmed, R. Jain, and B. L. Ahuja, J. Phys. Chem. Sol. 71, 187 (2010).10.1016/j.jpcs.2009.11.002Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure