Abstract
The stagnation-point flow of a second-grade fluid past a power law lubricated surface is considered in this paper. It is assumed that the fluid impinges on the wall obliquely. A suitable choice of similarity transformations reduces the governing partial differential equations into ordinary differential equations. The thin lubrication layer suggests that the interface conditions between the fluid and the lubricant can be imposed on the boundary. An implicit finite difference scheme known as the Keller-Box method is employed to obtain the numerical solutions. The effects of slip parameter and Weissenberg number on the fluid velocity and streamlines is discussed in the graphs. The limiting cases of partial-slip and no-slip can be deduced from the present solutions.
References
[1] K. Hiemenz, Dinglers Polytech. J. 326, 321 (1911).Search in Google Scholar
[2] J. T. Stuart, J. Aerospace Sci. 26, 124 (1959).10.2514/8.7963Search in Google Scholar
[3] K. J. Tamada, J. Phys. Soc. Jpn. 46, 310 (1979).10.1143/JPSJ.46.310Search in Google Scholar
[4] J. M. Dorrepaal, J. Fluid Mech. 163, 141 (1986).10.1017/S0022112086002240Search in Google Scholar
[5] C. Y. Wang, Z. Angew. Math. Phys. 54, 184 (2003).10.1007/PL00012632Search in Google Scholar
[6] P. Drazin and N. Riley, in: London Mathematical Society Lecture Note Series, Vol. 334, Cambridge University Press, Cambridge, (2006).Search in Google Scholar
[7] R. M. Tooke and M. G. Blyth, Phys. Fluids 20, 033101 (2008).10.1063/1.2876070Search in Google Scholar
[8] A. Borrelli, G. Giantesio, and M. C. Patria, ZAMP 63, 271 (2012).10.1007/s00033-011-0174-8Search in Google Scholar
[9] Y. Y. Lok, J. H. Merkin, and I. Pop, Meccanica, 50, 2949 (2015).10.1007/s11012-015-0188-ySearch in Google Scholar
[10] M. G. Blyth and C. Pozrikidis, Acta Mech. 180, 203 (2005).10.1007/s00707-005-0240-4Search in Google Scholar
[11] H. I. Andersson and M. Rousselet, Int. J. Heat Fluid Flow 27, 329 (2006).10.1016/j.ijheatfluidflow.2005.09.002Search in Google Scholar
[12] B. Santra, B. S. Dandapat, and H. I. Andersson, Acta Mech. 194, 1 (2007).10.1007/s00707-007-0484-2Search in Google Scholar
[13] M. Sajid, K. Mahmood, and Z. Abbas, Chin. Phys. Lett. 29, 024702 (2012).10.1088/0256-307X/29/2/024702Search in Google Scholar
[14] K. R. Rajagopal, in: Navier-Stokes Equations and Related Nonlinear Problems (Ed. A. Sequeira), Plenum Press, New York 1995, p. 273.10.1007/978-1-4899-1415-6_22Search in Google Scholar
[15] K. R. Rajagopal and A. S. Gupta, Meccanica 19, 158 (1984).10.1007/BF01560464Search in Google Scholar
[16] K. R. Rajagopal and P. N. Kaloni, Some Remarks on Boundary Conditions for Flows of Fluids of the Differential Type, Control Mechanics and Its Applications, Hemisphere Press, New York 1989.Search in Google Scholar
[17] B. W. Beard and K. Walters, Proc. Camb. Phil. Soc. 60, 667 (1964).10.1017/S0305004100038147Search in Google Scholar
[18] V. K. Garg and K. R. Rajagopal, Mech. Res. Commun. 17, 415 (1990).10.1016/0093-6413(90)90059-LSearch in Google Scholar
[19] P. D. Ariel, Int. J. Eng. Sci. 40, 145 (2002).10.1016/S0020-7225(01)00031-3Search in Google Scholar
[20] F. Labropulu, J. M. Dorrepaal, and O. P. Chandna, Mech. Res. Commun. 20, 143 (1993).10.1016/0093-6413(93)90021-FSearch in Google Scholar
[21] D. Li, F. Labropulu, and I. Pop, Int. J. Non-Linear Mech. 44, 1024 (2009).10.1016/j.ijnonlinmec.2009.07.007Search in Google Scholar
[22] F. Labropulu, X. Xu, and M. Chinichian, Int. J. Math. Math. Sci. 60, 3797 (2003).10.1155/S0161171203212357Search in Google Scholar
[23] F. Labropulu and D. Li, Int. J. Non-Linear Mech. 43, 941 (2008).10.1016/j.ijnonlinmec.2008.07.004Search in Google Scholar
[24] T. R. Mahapatra, S. Dholey, and A. S. Gupta, Int. J. Non-Linear Mech. 42, 484 (2007).10.1016/j.ijnonlinmec.2007.01.008Search in Google Scholar
[25] Y. Y. Lok, N. Amin, and I. Pop, Int. J. Non-Linear Mech. 41, 622 (2006).10.1016/j.ijnonlinmec.2006.03.002Search in Google Scholar
[26] M. Sajid, T. Javed, Z. Abbas, and N. Ali, Int. J. Nonlinear Sci. Numer. Simul. 14, 285 (2013).10.1515/ijnsns-2012-0046Search in Google Scholar
[27] M. Ahmed, M. Sajid, and I. Ahmad, Eur. Int. J. Sci. Technol., in press (2015).Search in Google Scholar
[28] M. Ahmed, M. Sajid, I. Ahmad, M. Taj, and A. Abbasi, Adv. Mech. Eng. 7, 1 (2015).10.59400/mea.v1i1.258Search in Google Scholar
[29] M. Ahmed, M. Sajid, T. Hayat, and I. Ahmad, AIP Adv. 5, 067138 (2015).10.1063/1.4922878Search in Google Scholar
[30] H. B. Keller and T. Cebeci, AIAA J. 10, 1193 (1972).10.2514/3.50349Search in Google Scholar
[31] V. Bradshaw, T. Cebeci, and I. H. Whitelaw, Engineering Calculation Methods for Turbulent Flows, Academic Press, London 1981.Search in Google Scholar
[32] H. B. Keller, in: Numerical Solution of Partial Differential Equations (Ed. J. Bramble), Vol. II, Academic Press, New York 1970.Search in Google Scholar
[33] K. Ahmad and R. Nazar, J. Qual. Meas. Anal. 6, 105 (2010).Search in Google Scholar
[34] W. Ibrahim and B. Shanker, Comput. Fluids 70, 21 (2012).10.1016/j.compfluid.2012.08.019Search in Google Scholar
[35] N. M. Sarif, M. Z. Salleh, and R. Nazar, Proc. Eng. 53, 542 (2013).10.1016/j.proeng.2013.02.070Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure