Home Physical Sciences Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
Article
Licensed
Unlicensed Requires Authentication

Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation

  • Wenguang Cheng EMAIL logo and Biao Li
Published/Copyright: March 11, 2016

Abstract

The truncated Painlevé method is developed to obtain the nonlocal residual symmetry and the Bäcklund transformation for the (2+1)-dimensional KdV–mKdV equation. The residual symmetry is localised after embedding the (2+1)-dimensional KdV–mKdV equation to an enlarged one. The symmetry group transformation of the enlarged system is computed. Furthermore, the (2+1)-dimensional KdV–mKdV equation is proved to be consistent Riccati expansion (CRE) solvable. The soliton–cnoidal wave interaction solution in terms of the Jacobi elliptic functions and the third type of incomplete elliptic integral is obtained by using the consistent tanh expansion (CTE) method, which is a special form of CRE.


Corresponding author: Wenguang Cheng, Faculty of Sciences, Yuxi Normal University, Yuxi 653100, PR China, E-mail:

Acknowledgments:

This work is supported by the National Natural Science Foundation of China under Grant Nos 11271211 and 11435005, and K.C. Wong Magna Fund in Ningbo University.

References

[1] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin 1986.10.1007/978-1-4684-0274-2Search in Google Scholar

[2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer Verlag, New York 1989.10.1007/978-1-4757-4307-4Search in Google Scholar

[3] G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York 2010.10.1007/978-0-387-68028-6Search in Google Scholar

[4] J. Weiss, M. Taboe, and G. Carnevale, J. Math. Phys. 24, 522 (1983).10.1063/1.525721Search in Google Scholar

[5] R. Conte, The Painlevé Property: One Century Later, Springer, New York 1999.10.1007/978-1-4612-1532-5Search in Google Scholar

[6] G. A. Guthrie, Proc. R. Soc. Lond, Ser. A. 446, 107 (1994).10.1098/rspa.1994.0094Search in Google Scholar

[7] S. Y. Lou, J. Math. Phys. 35, 2336 (1994).10.1063/1.530556Search in Google Scholar

[8] S. Y. Lou and X. B. Hu, J. Phys. A Math. Gen. 30, L95 (1997).10.1088/0305-4470/30/5/004Search in Google Scholar

[9] X. R. Hu, S. Y. Lou, and Y. Chen, Phys. Rev. E 85, 056607 (2012).Search in Google Scholar

[10] J. C. Chen, X. P. Xin, and Y. Chen, J. Math. Phys. 55, 053508 (2014).10.1063/1.4871554Search in Google Scholar

[11] J. C. Chen and Y. Chen, J. Nonlinear Math. Phys. 21, 454 (2014).10.1080/14029251.2014.936764Search in Google Scholar

[12] S. Y. Lou, X. R. Hu, and Y. Chen, J. Phys. A Math. Theor. 45, 155209 (2012).10.1088/1751-8113/45/15/155209Search in Google Scholar

[13] S. Y. Lou, J. Phys. A Math. Phys. 30, 4803 (1997).10.1088/0305-4470/30/13/028Search in Google Scholar

[14] G. W. Bluman and Z. Y. Yan, Euro. J. Appl. Math. 16, 239 (2005).10.1017/S0956792505005838Search in Google Scholar

[15] F. Galas, J. Phys. A Math. Gen. 25, L981 (1992).10.1088/0305-4470/25/15/014Search in Google Scholar

[16] X. P. Xin and Y. Chen, Chin. Phys. Lett. 30, 100202 (2013).10.1088/0256-307X/30/10/100202Search in Google Scholar

[17] S. Y. Lou, Residual symmetries and Bäcklund transformations, arXiv:1308.1140v1.Search in Google Scholar

[18] X. N. Gao, S. Y. Lou, and X. Y. Tang, J. High Energy Phys. 05, 029 (2013).10.1007/JHEP05(2013)029Search in Google Scholar

[19] S. Y. Lou, Stud. Appl. Math. 134, 372 (2015).10.1111/sapm.12072Search in Google Scholar

[20] S. Y. Lou, X. P. Cheng, and X. Y. Tang, Chin. Phys. Lett. 31, 070201 (2014).10.1088/0256-307X/31/7/070201Search in Google Scholar

[21] D. Yang, S. Y. Lou, and W. F. Yu, Commun. Theor. Phys. 60, 387 (2013).10.1088/0253-6102/60/4/01Search in Google Scholar

[22] Y. H. Wang and H. Wang, Phys. Scr. 89, 125203 (2014).10.1088/0031-8949/89/12/125203Search in Google Scholar

[23] W. G. Cheng, B. Li, and Y. Chen, Commun. Theor. Phys. 63, 549 (2015).10.1088/0253-6102/63/5/549Search in Google Scholar

[24] X. R. Hu and Y. Q. Li, Appl. Math. Lett. 51, 20 (2016).Search in Google Scholar

[25] X. R. Hu and Y. Chen, Z. Naturforsch. A 70, 729 (2015).10.1515/zna-2015-0254Search in Google Scholar

[26] Y. Q. Liu, F. Duan, and C. Hu, J. Appl. Math. Phys. 3, 697 (2015).Search in Google Scholar

[27] R. M. Miura, J. Math. Phys. 9, 1202 (1968).10.1063/1.1664700Search in Google Scholar

[28] K. Konno and Y. H. Ichikawa, J. Phys. Soc. Jpn. 37, 1631 (1974).10.1143/JPSJ.37.1631Search in Google Scholar

[29] J. F. Zhang, Int. J. Theor. Phys. 37, 1541 (1998).10.1023/A:1026615919186Search in Google Scholar

[30] A. J. Keane, A. Mushtaq, and M. S. Wheatland, Phys. Rev. E 83, 066407 (2011).10.1103/PhysRevE.83.066407Search in Google Scholar PubMed

Received: 2015-11-30
Accepted: 2016-2-8
Published Online: 2016-3-11
Published in Print: 2016-4-1

©2016 by De Gruyter

Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0504/pdf?lang=en
Scroll to top button