Abstract
Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker–Teter–Hutter (GTH) and Troullier–Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4–28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.
Acknowledgments
We sincerely thank Dr. S. Jalali of our Physics Department for fruitful general discussion at the beginning stage of this work. N.S. also thanks MSTR and Iranian Nanotechnology Initiative Council for financial support.
References
[1] R. Xiao, F. Tasnádi, K. Koepernik, J. W. F. Venderbos, M. Richter, et al., Phys. Rev. B 84, 165404 (2011).10.1103/PhysRevB.84.165404Search in Google Scholar
[2] A. Z. Al Zahrani and G. P. Srivastava, Braz. J. Phys. 39, 694 (2009).10.1590/S0103-97332009000600013Search in Google Scholar
[3] F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).10.1103/PhysRevB.76.064120Search in Google Scholar
[4] J. L. Cheng, C. Salazar, and J. E. Sipe, Phys. Rev. B 88, 045438 (2013).10.1103/PhysRevB.88.045438Search in Google Scholar
[5] T. Mahmoodiand and J. Rastegari, Int. J. Phys. 1, 1 (2013).Search in Google Scholar
[6] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Appl. Phys. Lett. 93, 202110 (2008).10.1063/1.3033202Search in Google Scholar
[7] C. Thierfelder, M. Witte, S. Blankenburg, E. Rauls, and W. G. Schmidt, Surf. Sci. 605, 746 (2011).10.1016/j.susc.2011.01.012Search in Google Scholar
[8] K. C. Rahnejat, C. A. Howard, N. E. Shuttleworth, S. R. Schofield, K. Iwaya, et al., Nature Commun. 2, 558 (2011).10.1038/ncomms1574Search in Google Scholar
[9] M. Xue, G. Chen, H. Yang, Y. Zhu, D. Wang, et al., J. Am. Chem. Soc. 134, 6536 (2012).10.1021/ja3003217Search in Google Scholar
[10] D. Szczȩśniak, A. P. Durajski, and R. Szczȩśniak, J. Phys. Condens. Matter 26, 255701 (2014).10.1088/0953-8984/26/25/255701Search in Google Scholar PubMed
[11] J. Pěsić, R. Gajić, K. Hingerl, and M. Belić, Eur. Phys. Lett. (EPL) 108, 67005 (2014).10.1209/0295-5075/108/67005Search in Google Scholar
[12] G. Profeta, M. Calandra, and F. Mauri, Nature Phys. 8, 131 (2012).10.1038/nphys2181Search in Google Scholar
[13] T. P. Hardcastle, C. R. Seabourne, R. Zan, R. M. D. Brydson, U. Bangert, et al., Phys. Rev. B 87, 195430 (2013).10.1103/PhysRevB.87.195430Search in Google Scholar
[14] G. Kondayya and A. Shukla, Physica B 406, 3538 (2011).10.1016/j.physb.2011.06.008Search in Google Scholar
[15] E. van Veen, BSc Thesis, Radboud University Nijmegen 2012.Search in Google Scholar
[16] H. Alkhateb, A. Al-Ostaz, and A. H.-D. Cheng, Carbon Lett. 11, 316 (2010).10.5714/CL.2010.11.4.316Search in Google Scholar
[17] S. Sato, N. Harada, D. Kondo, and M. Ohfuchi, Fujitsu Sci. Tech. J. 46, 103 (2009).Search in Google Scholar
[18] M. Topsakal, V. M. K. Bagci, and S. Ciraci, Phys. Rev. B 81, 205437 (2010).10.1103/PhysRevB.81.205437Search in Google Scholar
[19] B. Peles-Lemli, D. Kánnár, J. C. Nie, H. Li, and S. Kunsági-Máté, J. Phys. Chem. C 117, 21509 (2013).10.1021/jp403856eSearch in Google Scholar
[20] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).10.1103/PhysRevB.54.1703Search in Google Scholar PubMed
[21] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).10.1103/PhysRevB.43.1993Search in Google Scholar
[22] Car–Parrinello Molecular Dynamic (CPMD), http://www.cpmd.org.Search in Google Scholar
[23] M. W. Chase Jr., J. Phys. Chem. Ref. Data Monograph 9, 1 (1998).Search in Google Scholar
[24] H. Shin, S. Kang, J. Koo, H. Lee, J. Koo, et al., J. Chem. Phys. 140, 114702 (2014).10.1063/1.4867544Search in Google Scholar
[25] B. I. Dunlap and J. C. Boettger, J. Phys. B: At. Mol. Opt. Phys. 29, 4907 (1996).10.1088/0953-4075/29/21/004Search in Google Scholar
[26] L. Li, S. Reich, and J. Robertson, Phys. Rev. B 72, 184109 (2005).10.1103/PhysRevB.72.184109Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling