Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
-
Paul O. Adebambo
, Bamidele I. Adetunji
, Joseph A. Olowofela , James A. Oguntuase und Gboyega A. Adebayo
Abstract
In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1b with space group F4̅3m (216) NiTiAl alloys is predicted and that of Ni2TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni2TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni2TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni3Al binary systems.
References
[1] J. H. Westbrook and R. L. Fleischer, Wiley and Sons, New York 2000.Suche in Google Scholar
[2] W. Lin and A. J. Freeman, Phys. Rev. B 45, 61 (1992).10.1103/PhysRevB.45.61Suche in Google Scholar
[3] T. M. Pollock and S. J. Tin, Propul. Power 22, 361 (2006).10.2514/1.18239Suche in Google Scholar
[4] M. Enomoto and T. Kumeta, Intermetallics 5, 103 (1997).10.1016/S0966-9795(96)00072-6Suche in Google Scholar
[5] G. H. Bozzolo, R. D. Noebe, and C. Amador, Intermetallics, 10, 149 (2002).10.1016/S0966-9795(01)00124-8Suche in Google Scholar
[6] F. Heusler, Verh. d. DPG 5, 219, 1903.Suche in Google Scholar
[7] F. Heusler, W. Starck, and E. Haupt, Verh. d. DPG 5, 220, 1903.Suche in Google Scholar
[8] F. Heusler, Z. Angew. Chem. 17, 260, 1904.10.1002/ange.19040170903Suche in Google Scholar
[9] C. Felser, H. G. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).10.1002/anie.200601815Suche in Google Scholar
[10] D. Kieven and R. Klenk, Phys. Rev. B 81, 075208 (2010).10.1103/PhysRevB.81.075208Suche in Google Scholar
[11] S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, et al., Phys. Rev. B 82, 085108 (2010).10.1103/PhysRevB.82.085108Suche in Google Scholar
[12] C. G. F. Blum, S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, et al., Appl. Phys. Lett. 98, 25250 (2011).10.1063/1.3600663Suche in Google Scholar
[13] I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002).10.1103/PhysRevB.66.134428Suche in Google Scholar
[14] G. Bozzolo, R. D. Noebe, J. Ferrante, A. Garg, F. S. Honecy, et al., J. Compt. Aid Mat. Sci. 6, 33 (1999).Suche in Google Scholar
[15] Y. Koizumi, Y Ro, S. Nakazawa, and H. Harada, Mater. Sci. Eng. A 223, 36 (1997).10.1016/S0921-5093(96)10508-6Suche in Google Scholar
[16] E. Sasioglu, I. Galanakis, C. Friedrich, and S. Blugel, Phys. Rev. B 88, 134402 (2013).10.1103/PhysRevB.88.134402Suche in Google Scholar
[17] J. Jung, G. Ghosh, and G. B. Olson. Acta Mater. 51, 6341 (2003).10.1016/j.actamat.2003.08.003Suche in Google Scholar
[18] P. Warren, Y. Murakami, Y. Koizumi, and H. Harada, Mater. Sci. Eng. A 223, 17(1997).10.1016/S0921-5093(96)10472-XSuche in Google Scholar
[19] K.-T. Liu and J.-G. Duh, Appl. Surf. Sci. 253, 5268 (2007).10.1016/j.apsusc.2006.11.046Suche in Google Scholar
[20] F. S. da Rocha, G. L. F. Fraga, D. E. Brandão, C. M. da Silva, and A. A. Gomes, Physica B 269,154 (1999).10.1016/S0921-4526(99)00102-7Suche in Google Scholar
[21] L. W. Pan, L. J. Zheng, W. J. Han, L. Zhou, Z. L. Hu, et al., Mater. Des. 39,192 (2012).10.1016/j.matdes.2012.02.046Suche in Google Scholar
[22] K.-T Liu and J.-G. Duh, J. Phase Equilib. Diffus. 31, 223 (2010).10.1007/s11669-010-9693-9Suche in Google Scholar
[23] http://www.nobel.se/chemistry/laureates/1998/.Suche in Google Scholar
[24] W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1113 (1965).10.1103/PhysRev.140.A1133Suche in Google Scholar
[25] J. A. Pople, Rev. Mod. Phys. 71, 1267 (1999).10.1103/RevModPhys.71.1267Suche in Google Scholar
[26] P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964).10.1103/PhysRev.136.B864Suche in Google Scholar
[27] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502Suche in Google Scholar PubMed
[28] S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org/ (2005).Suche in Google Scholar
[29] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, et al., http://www.quantumespresso.org/ (2005).Suche in Google Scholar
[30] Pseudopotential Ni.pz-nd-rrkjus.UPF, www.quantumespresso.org.Suche in Google Scholar
[31] Pseudopotential Al.pz-vbc.UPF from www.quantumespresso.org.Suche in Google Scholar
[32] Pseudopotential Ti.pz-sp-van.UPF, www.quantumespresso.org.Suche in Google Scholar
[33] Pseudopotential Ni.pbe-n-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Suche in Google Scholar
[34] Pseudopotential Al.pbe-n-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Suche in Google Scholar
[35] Pseudopotential Ti.pbe-spn-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Suche in Google Scholar
[36] H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 5188 (1976).10.1103/PhysRevB.13.5188Suche in Google Scholar
[37] F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244, (1944).10.1073/pnas.30.9.244Suche in Google Scholar PubMed PubMed Central
[38] W. Jeitschko, Metall: Trans. B 1, 3159 (1970).10.1007/BF03038432Suche in Google Scholar
[39] H. C. Kandpal, C. Felser, and R. J. Seshadri, Phys D: Appl. Phys. 39, 776 (2006).10.1088/0022-3727/39/5/S02Suche in Google Scholar
[40] A. Kokalj, Comp. Mater. Sci. 28, 155 (2003).10.1016/S0927-0256(03)00104-6Suche in Google Scholar
[41] P. V. Sreenivasa and V. K. Reddy, J. Alloys Comp. 616, 527 (2014).10.1016/j.jallcom.2014.07.020Suche in Google Scholar
[42] R. E. Watson, M. Weinert, and M. Alatalo, Phys. Rev. B. 57, 12134 (1998).10.1103/PhysRevB.57.12134Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties