Startseite Naturwissenschaften Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach

  • Paul O. Adebambo EMAIL logo , Bamidele I. Adetunji , Joseph A. Olowofela , James A. Oguntuase und Gboyega A. Adebayo
Veröffentlicht/Copyright: 22. Januar 2016

Abstract

In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1b with space group F4̅3m (216) NiTiAl alloys is predicted and that of Ni2TiAl is in close agreement with available results. The band dispersion along the high symmetry points WL→Γ→XWK in Ni2TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni2TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni3Al binary systems.


Corresponding author: Paul O. Adebambo, Department of Physics, University of Agriculture, PMB 2240 Abeokuta, Nigeria; and Department of Physical and Computer Sciences, McPherson University, Km 96 Lagos-Ibadan Expressway, Seriki Sotayo, PMB 2094, Abeokuta, Nigeria, E-mail:

References

[1] J. H. Westbrook and R. L. Fleischer, Wiley and Sons, New York 2000.Suche in Google Scholar

[2] W. Lin and A. J. Freeman, Phys. Rev. B 45, 61 (1992).10.1103/PhysRevB.45.61Suche in Google Scholar

[3] T. M. Pollock and S. J. Tin, Propul. Power 22, 361 (2006).10.2514/1.18239Suche in Google Scholar

[4] M. Enomoto and T. Kumeta, Intermetallics 5, 103 (1997).10.1016/S0966-9795(96)00072-6Suche in Google Scholar

[5] G. H. Bozzolo, R. D. Noebe, and C. Amador, Intermetallics, 10, 149 (2002).10.1016/S0966-9795(01)00124-8Suche in Google Scholar

[6] F. Heusler, Verh. d. DPG 5, 219, 1903.Suche in Google Scholar

[7] F. Heusler, W. Starck, and E. Haupt, Verh. d. DPG 5, 220, 1903.Suche in Google Scholar

[8] F. Heusler, Z. Angew. Chem. 17, 260, 1904.10.1002/ange.19040170903Suche in Google Scholar

[9] C. Felser, H. G. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).10.1002/anie.200601815Suche in Google Scholar

[10] D. Kieven and R. Klenk, Phys. Rev. B 81, 075208 (2010).10.1103/PhysRevB.81.075208Suche in Google Scholar

[11] S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, et al., Phys. Rev. B 82, 085108 (2010).10.1103/PhysRevB.82.085108Suche in Google Scholar

[12] C. G. F. Blum, S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, et al., Appl. Phys. Lett. 98, 25250 (2011).10.1063/1.3600663Suche in Google Scholar

[13] I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002).10.1103/PhysRevB.66.134428Suche in Google Scholar

[14] G. Bozzolo, R. D. Noebe, J. Ferrante, A. Garg, F. S. Honecy, et al., J. Compt. Aid Mat. Sci. 6, 33 (1999).Suche in Google Scholar

[15] Y. Koizumi, Y Ro, S. Nakazawa, and H. Harada, Mater. Sci. Eng. A 223, 36 (1997).10.1016/S0921-5093(96)10508-6Suche in Google Scholar

[16] E. Sasioglu, I. Galanakis, C. Friedrich, and S. Blugel, Phys. Rev. B 88, 134402 (2013).10.1103/PhysRevB.88.134402Suche in Google Scholar

[17] J. Jung, G. Ghosh, and G. B. Olson. Acta Mater. 51, 6341 (2003).10.1016/j.actamat.2003.08.003Suche in Google Scholar

[18] P. Warren, Y. Murakami, Y. Koizumi, and H. Harada, Mater. Sci. Eng. A 223, 17(1997).10.1016/S0921-5093(96)10472-XSuche in Google Scholar

[19] K.-T. Liu and J.-G. Duh, Appl. Surf. Sci. 253, 5268 (2007).10.1016/j.apsusc.2006.11.046Suche in Google Scholar

[20] F. S. da Rocha, G. L. F. Fraga, D. E. Brandão, C. M. da Silva, and A. A. Gomes, Physica B 269,154 (1999).10.1016/S0921-4526(99)00102-7Suche in Google Scholar

[21] L. W. Pan, L. J. Zheng, W. J. Han, L. Zhou, Z. L. Hu, et al., Mater. Des. 39,192 (2012).10.1016/j.matdes.2012.02.046Suche in Google Scholar

[22] K.-T Liu and J.-G. Duh, J. Phase Equilib. Diffus. 31, 223 (2010).10.1007/s11669-010-9693-9Suche in Google Scholar

[23] http://www.nobel.se/chemistry/laureates/1998/.Suche in Google Scholar

[24] W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1113 (1965).10.1103/PhysRev.140.A1133Suche in Google Scholar

[25] J. A. Pople, Rev. Mod. Phys. 71, 1267 (1999).10.1103/RevModPhys.71.1267Suche in Google Scholar

[26] P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964).10.1103/PhysRev.136.B864Suche in Google Scholar

[27] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502Suche in Google Scholar PubMed

[28] S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org/ (2005).Suche in Google Scholar

[29] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, et al., http://www.quantumespresso.org/ (2005).Suche in Google Scholar

[30] Pseudopotential Ni.pz-nd-rrkjus.UPF, www.quantumespresso.org.Suche in Google Scholar

[31] Pseudopotential Al.pz-vbc.UPF from www.quantumespresso.org.Suche in Google Scholar

[32] Pseudopotential Ti.pz-sp-van.UPF, www.quantumespresso.org.Suche in Google Scholar

[33] Pseudopotential Ni.pbe-n-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Suche in Google Scholar

[34] Pseudopotential Al.pbe-n-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Suche in Google Scholar

[35] Pseudopotential Ti.pbe-spn-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Suche in Google Scholar

[36] H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 5188 (1976).10.1103/PhysRevB.13.5188Suche in Google Scholar

[37] F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244, (1944).10.1073/pnas.30.9.244Suche in Google Scholar PubMed PubMed Central

[38] W. Jeitschko, Metall: Trans. B 1, 3159 (1970).10.1007/BF03038432Suche in Google Scholar

[39] H. C. Kandpal, C. Felser, and R. J. Seshadri, Phys D: Appl. Phys. 39, 776 (2006).10.1088/0022-3727/39/5/S02Suche in Google Scholar

[40] A. Kokalj, Comp. Mater. Sci. 28, 155 (2003).10.1016/S0927-0256(03)00104-6Suche in Google Scholar

[41] P. V. Sreenivasa and V. K. Reddy, J. Alloys Comp. 616, 527 (2014).10.1016/j.jallcom.2014.07.020Suche in Google Scholar

[42] R. E. Watson, M. Weinert, and M. Alatalo, Phys. Rev. B. 57, 12134 (1998).10.1103/PhysRevB.57.12134Suche in Google Scholar

Received: 2015-10-20
Accepted: 2015-12-10
Published Online: 2016-1-22
Published in Print: 2016-2-1

©2016 by De Gruyter

Heruntergeladen am 19.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0439/pdf?lang=de
Button zum nach oben scrollen