Abstract
How to construct a variable coefficient integrable coupling equation hierarchy is an important problem. In this paper, we present new Lax pairs with some arbitrary functions and generate a variable coefficient integrable coupling of Ablowitz-Kaup-Newell-Segur hierarchy from a zero-curvature equation. Then the Hamiltonian structure of the variable coefficient coupling equation hierarchy is derived from the variational trace identity. It is also indicated that this method is an efficient and straightforward way to construct the variable coefficient integrable coupling equation hierarchy.
Acknowledgments
This work was supported by the Natural Science Foundation of Liaoning Province, China (grant no. 2015020029), and the project was supported by the National Natural Science Foundation of China (grant no. 11301349).
References
[1] A. Pickering, J. Phys. A 26, 4395 (1993).10.1088/0305-4470/26/17/044Search in Google Scholar
[2] J. F. Zhang, Chinese Phys. Lett. 16, 4 (1999).10.1088/0256-307X/16/1/002Search in Google Scholar
[3] E. G. Fan and H. Q. Zhang, Phys. Lett. A 245, 389 (1998).10.1016/S0375-9601(98)00464-2Search in Google Scholar
[4] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge 1991.10.1017/CBO9780511623998Search in Google Scholar
[5] V. G. Drinfeld and V. V. Sokolov, Soviet. Math. Dokl. 23, 457 (1981).Search in Google Scholar
[6] W. X. Ma and M. Chen, J. Phys. A 39, 10787 (2006).10.1088/0305-4470/39/34/013Search in Google Scholar
[7] P. Casati, A. Della Vedova, and G. Ortenzi, J. Geom. Phys. 58, 377 (2008).10.1016/j.geomphys.2007.11.012Search in Google Scholar
[8] W. X Ma, Appl. Math. Comput. 220, 117 (2013).Search in Google Scholar
[9] W. X. Ma, J. Math. Phys. 54, 103509 (2013).10.1063/1.4826104Search in Google Scholar
[10] X. G. Geng and W. X. Ma, Il Nuovo Cimento A 108, 477 (1995).10.1007/BF02813604Search in Google Scholar
[11] Z. Y. Yan and H. Q. Zhang, J. Math. Phys. 42, 330 (2001).10.1093/ilar.42.4.330Search in Google Scholar
[12] W. X. Ma, in: Nonlinear and Modern Mathematical Physics, (Eds. W. X. Ma, X. B. Hu, and Q. P. Liu), AIP Conf. Proc. 1212, American Institute of Physics, Melville, NY 2010, p. 127.Search in Google Scholar
[13] X. B. Hu, J. Phys. A 27, 2497 (1994).10.1088/0305-4470/27/7/026Search in Google Scholar
[14] F. K. Guo, Acta. Math. Sci, 19, 507 (1999).Search in Google Scholar
[15] E. G. Fan, J. Math. Phys. 41, 7769 (2000).10.1063/1.1314895Search in Google Scholar
[16] Y. F. Zhang and H. Q. Zhang, J. Math. Rese. Expos. 22, 289 (2002).10.1023/A:1015858006000Search in Google Scholar
[17] H. Y. Wei, T. C. Xia, and H. Wang, Anna. Diff. Equ. 29, 222 (2013).10.1186/1687-1847-2013-360Search in Google Scholar
[18] Y. F. Zhang, Chin. Phys. 12, 1194 (2004).Search in Google Scholar
[19] F. K. Guo and Y. F. Zhang, J. Phys. A. 38, 8537 (2005).10.1088/0305-4470/38/40/005Search in Google Scholar
[20] T. C. Xia, F. C. You, and W. Y. Zhao, Commun. Theor. Phys. 44, 990 (2005).10.1088/6102/44/6/990Search in Google Scholar
[21] W. X. Ma, X. X. Xu, and Y. F. Zhang, Phys. Lett. A. 351, 125 (2006).10.1016/j.physleta.2005.09.087Search in Google Scholar
[22] Y. F. Zhang and F. K. Guo, Chaos Solitons Fracta. 34, 490 (2007).10.1016/j.chaos.2006.03.061Search in Google Scholar
[23] Y. F. Zhang and H. W. Tam, Commun. Nonlinear Sci. Numer. Simul. 13, 524 (2008).10.1016/j.cnsns.2006.06.003Search in Google Scholar
[24] W. X. Ma and Y. F. Zhang, Appl. Anal. 89, 457 (2010).10.1080/00036810903277143Search in Google Scholar
[25] F. C. You and T. C. Xia, App. Math. Compu. 201, 44 (2008).10.1016/j.amc.2007.11.048Search in Google Scholar
[26] Y. F. Zhang and B. L. Feng, Commun. Nonlinear Sci. Numer. Simul. 16, 3045 (2011).10.1016/j.cnsns.2010.11.028Search in Google Scholar
[27] F. J. Yu, S. Feng, and Y. Zhao, Abstr. Appl. Anal. 2014, 146537 (2014).Search in Google Scholar
[28] G. M. Wang, Abstr. Appl. Anal. 2014, 357621 (2014).Search in Google Scholar
[29] W. X. Ma, Phys. Lett. A. 367, 473 (2007).10.1016/j.physleta.2007.03.047Search in Google Scholar
[30] W. X. Ma, Phys. Lett. A. 316, 72 (2003).10.2307/43630508Search in Google Scholar
[31] F. C. You and T. C. Xia, Int. J. Theor Phys. 46, 3159 (2007).10.1007/s10773-007-9430-2Search in Google Scholar
[32] G. Z. Tu, J. Phys. A: Math. Gen. 23, 3903 (1990).10.1088/0305-4470/23/17/020Search in Google Scholar
[33] F. K. Guo and Y. F. Zhang, J. Math. Phys. 44, 5793 (2003).10.1063/1.1623000Search in Google Scholar
[34] F. J. Yu, Phys. Lett. A. 375, 1504 (2011).10.1016/j.physleta.2011.02.043Search in Google Scholar
[35] D. Y. Chen, Introductiou to Solitons, Science Press, Beijing 2006.Search in Google Scholar
[36] G. R. Ma, J. Math. Phys. 19, 1156 (1978).Search in Google Scholar
[37] L. Li and F. J. Yu, Int. J. Nonlinear Sci. Numer. Simul. 14, 513 (2013).10.1515/ijnsns-2013-0068Search in Google Scholar
[38] Y. F. Zhang and H. Q. Zhang, J. Math. Phys. 43, 466 (2002).10.1063/1.1398061Search in Google Scholar
[39] Y. F. Zhang, L. X. Wu, and W. J. Rui. Commun. Theor. Phys. 63, 535 (2015).10.1088/0253-6102/63/5/535Search in Google Scholar
[40] Y. F. Zhang, H. Tam, and L. X. Wu, Z. Naturforsch. 70, 975 (2015).10.1515/zna-2015-0321Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure
Articles in the same Issue
- Frontmatter
- Review Article
- The Strange (Hi)story of Particles and Waves
- Research Articles
- Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential
- A Numerical Study for the Relationship between Natural Manganese Dendrites and DLA Patterns
- Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation
- Soliton Solutions of a Generalised Nonlinear Schrödinger–Maxwell–Bloch System in the Erbium-Doped Optical Fibre
- Studies of the Local Distortions and the EPR Parameters for Cu2+ in xLi2O-(30–x)Na2O-69·5B2O Glasses
- Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal
- Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs
- Nonorthogonal Stagnation-point Flow of a Second-grade Fluid Past a Lubricated Surface
- Constructing a Variable Coefficient Integrable Coupling Equation Hierarchy and its Hamiltonian Structure