Abstract
Evolution of bright optical spatial solitons in biased photovoltaic photorefractive (PVPR) medium is investigated in the present work. The space-charge field developed in the medium is comprised of local and nonlocal parts. Lowest order charge drift results in the buildup of the local space-charge field, whereas higher order drift and charge diffusion are responsible for nonlocal field development. The dynamical equation for solitons in the closed circuit PVPR medium is obtained under Akhmanov’s paraxial ray approximation. Conditions for stationary propagation are obtained, and the path of soliton in the medium is examined. The asymmetry in the nonlinear refractive index introduced by nonlocal contribution to the space-charge field causes a soliton to deflect from its straight line path in the medium. The roles of charge diffusion and higher order drift on soliton trajectory are examined.
Acknowledgments
We thank the anonymous reviewer for pointing out some important missing points in the investigation which have now been taken care of.
References
[1] M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).10.1103/PhysRevLett.68.923Suche in Google Scholar
[2] M. Karlsson, D. Anderson, A. Hook, and M. Lisak, Phys. Scr. 50, 265 (1994).10.1088/0031-8949/50/3/008Suche in Google Scholar
[3] G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, Boston, MA, 1995.Suche in Google Scholar
[4] D. Anderson, Phys. Rev. A 27, 3135 (1983).10.1103/PhysRevA.27.3135Suche in Google Scholar
[5] S. Konar and A. Sengupta, J. Opt. Soc. Am. B 11, 1644 (1994).10.1364/JOSAB.11.001644Suche in Google Scholar
[6] S. Konar, M. Mishra, and S. Jana, Phys. Lett. A, 362, 505 (2007).10.1016/j.physleta.2006.11.025Suche in Google Scholar
[7] G. C. Duree, J. L. Slultz, G. Salamo, M. Segev, A. Yariv, et al. Phys. Rev. Lett. 71, 533 (1993).10.1103/PhysRevLett.71.533Suche in Google Scholar
[8] D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12,1628 (1995).10.1364/JOSAB.12.001628Suche in Google Scholar
[9] S. Konar, S. Jana, and S. Shwetanshumala Opt. Com. 273, 324 (2007).10.1016/j.optcom.2007.01.051Suche in Google Scholar
[10] N. Asif, S. Shwetanshumala, and S Konar, Phys. Lett. A 372, 735 (2008).10.1016/j.physleta.2007.08.009Suche in Google Scholar
[11] M. Chauvet, S. A. Hawkins, G. Salamo, M. Segev, D. F. Bliss, et al. Appl. Phys. Lett. 70, 2499 (1997).10.1063/1.118902Suche in Google Scholar
[12] M.-F Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, et al. Electron. Lett. 31, 826 (1995).10.1049/el:19950570Suche in Google Scholar
[13] A. A. Zozulya, D. R. Anderson, A.V. Mamaev, and M. Staffman, Euro. Phys. Lett. 36, 419 (1996).10.1209/epl/i1996-00245-ySuche in Google Scholar
[14] K. Kos, H. Ming, G. Salamo, M.-F Shih, M. Segev, et al. Phys. Rev. E 53, R4330 (1996).10.1103/PhysRevE.53.R4330Suche in Google Scholar PubMed
[15] S. Lan, E. DelRe, Z. Chen, M.-F Shih, and M. Segev, Opt. Lett. 24, 475 (1999).10.1364/OL.24.000475Suche in Google Scholar
[16] M. Segev and A. J. Agranat, Opt. Lett. 22, 1299 (1997).10.1364/OL.22.001299Suche in Google Scholar
[17] S. Konar, S. Shekhar, and W. P. Hong, Opt. Laser Technol. 42, 1294 (2010).10.1016/j.optlastec.2010.04.005Suche in Google Scholar
[18] M. Chauvet, J. Opt. Soc. Am. 20, 2515 (2003).10.1364/JOSAB.20.002515Suche in Google Scholar
[19] L. Zhang, K-Quing Lu, Mei-Zhi Zhang, Xue-Ming Liu, and Yan-Peng Zhang, Chin. Phys. B 17, 2539 (2008).10.1088/1674-1056/17/7/033Suche in Google Scholar
[20] M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).10.1103/PhysRevLett.73.3211Suche in Google Scholar
[21] S. Srivastava and S. Konar, Optics Laser Technol. 41, 419 (2009).10.1016/j.optlastec.2008.08.005Suche in Google Scholar
[22] K. Zhan, C. Hou, and Y. Du, Opt. Commun. 283, 138 (2010).10.1016/j.optcom.2009.09.041Suche in Google Scholar
[23] G. Zhang, J. Liu, S. Liu, H. Zhang, and C. Wang, J. Opt. A: Pure Appl. Opt. 8, 442 (2006).10.1088/1464-4258/8/5/012Suche in Google Scholar
[24] Y. Su, Q. Jiang, and X. Ji, Phys. Scr. 82, 035401 (2010).10.1088/0031-8949/82/03/035401Suche in Google Scholar
[25] M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, Opt. Lett. 30, 1977 (2005).10.1364/OL.30.001977Suche in Google Scholar
[26] W. Królikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, Phys. Rev. E 54, 5761 (1996).10.1103/PhysRevE.54.5761Suche in Google Scholar PubMed
[27] M. I. Carvalho, M. Facao, and D. N. Christodoulides, Phys. Rev. E 76, 16602 (2007).10.1103/PhysRevE.76.016602Suche in Google Scholar PubMed
[28] S. Shwetanshumala, S. Konar, N. Asif, and A. Biswas, Phys. Scr. 84, 025402 (2011).10.1088/0031-8949/84/02/025402Suche in Google Scholar
[29] S. Shwetanshumala, N. Asif, S. Konar, and A. Biswas, Optik 124, 229 (2013).10.1016/j.ijleo.2011.11.053Suche in Google Scholar
[30] N. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).10.1080/00150197908239450Suche in Google Scholar
[31] S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Radio Phys. Quant. Electron. 14, 1062 (1971).10.1007/BF01029467Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Artikel in diesem Heft
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties