Startseite Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid

  • Purak Das , Suven Das und Arpita Dutta EMAIL logo
Veröffentlicht/Copyright: 17. September 2024

Abstract

A protected tripeptide Boc-l-Leu-5-AIA-Aib-OMe was synthesized where 5-aminoisophthalic acid (5-AIA), a rigid non-coded aromatic γ-amino acid is incorporated as central residue. The single crystal X-ray diffraction study indicates that the peptide self-assembles into supramolecular sheet through intermolecular hydrogen bonding interaction N–HO and π ··· π interaction.


Corresponding author: Arpita Dutta, Department of Chemistry, Rishi Bankim Chandra Evening College, 24-Parganas (N), Pin-743165, Naihati, India, E-mail:

Funding source: SERB (DST), INDIA

Award Identifier / Grant number: TAR/2018/000228

Acknowledgments

AD acknowledges laboratory facilities at R. B. C. Evening College, Naihati.

  1. Informed consent: Informed consent was obtained from all individuals included in this study.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Research funding: PD is grateful to SERB (DST), India for fellowship [No. TAR/2018/000228].

  5. Ethical Approval: The local Institutional Review Board deemed the study exempt from review.

References

1. Pieters, B. J. G. E.; van Eldijk, M. B.; Nolte, R. J. M.; Mecinović, J. Natural Supramolecular Protein Assemblies. Chem. Soc. Rev. 2016, 45, 24–39; https://doi.org/10.1039/c5cs00157a.Suche in Google Scholar PubMed

2. Sheehan, F.; Sementa, D.; Jain, A.; Kumar, M.; Tayarani-Najjaran, M.; Kroiss, D.; Ulijn, R. V. Peptide-Based Supramolecular Systems Chemistry. Chem. Rev. 2021, 121, 13869–13914; https://doi.org/10.1021/acs.chemrev.1c00089.Suche in Google Scholar PubMed

3. Lehn, J.-M. From Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev. 2007, 36, 151–160; https://doi.org/10.1002/chin.200720232.Suche in Google Scholar

4. Ulijn, R. V.; Smith, A. M. Designing Peptide Based Nanomaterials. Chem. Soc. Rev. 2008, 37, 664–675; https://doi.org/10.1039/b609047h.Suche in Google Scholar PubMed

5. Waters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Pept. Sci. 2004, 76, 435–445; https://doi.org/10.1002/bip.20144.Suche in Google Scholar PubMed

6. Haridas, V. Tailoring of Peptide Vesicles: A Bottom-Up Chemical Approach. Acc. Chem. Res. 2021, 54, 1934–1949; https://doi.org/10.1021/acs.accounts.0c00690.Suche in Google Scholar PubMed

7. Kassem, S.; Ulijn, R. V. Designed Complex Peptide-Based Adaptive Systems: A Bottom-Up Approach. ChemSystemsChem 2022, 5, e202200040; https://doi.org/10.1002/syst.202200040.Suche in Google Scholar

8. Gellman, S. H. Foldamers: A Manifesto. Acc. Chem. Res. 1998, 31, 173–180; https://doi.org/10.1021/ar960298r.Suche in Google Scholar

9. Seebach, D.; Gardiner, J. β-Peptidic Peptidomimetics. Acc. Chem. Res. 2008, 41, 1366–1375; https://doi.org/10.1021/ar700263g.Suche in Google Scholar PubMed

10. Liskamp, R. M. J.; Rijkers, D. T. S.; Kruijtzer, J. A. W.; Kemmink, J. Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics. ChemBioChem 2011, 12, 1626–1653; https://doi.org/10.1002/cbic.201000717.Suche in Google Scholar PubMed

11. Sang, P.; Cai, J. Unnatural Helical Peptidic Foldamers as Protein Segment Mimics. Chem. Soc. Rev. 2023, 52, 4843–4877; https://doi.org/10.1039/d2cs00395c.Suche in Google Scholar PubMed PubMed Central

12. Martinek, T. A.; Fülöp, F. Peptidic Foldamers: Ramping up Diversity. Chem. Soc. Rev. 2012, 41, 687–702; https://doi.org/10.1039/c1cs15097a.Suche in Google Scholar PubMed

13. Bouillère, F.; Thétiot-Laurent, S.; Kouklovsky, C.; Alezra, V. Foldamers Containing γ-amino Acid Residues or Their Analogues: Structural Features and Applications. Amino Acids 2011, 41, 687–707; https://doi.org/10.1007/s00726-011-0893-3.Suche in Google Scholar PubMed

14. Fisher, B. F.; Gellman, S. H. Impact of γ-Amino Acid Residue Preorganization on α/γ-peptide Foldamer Helicity in Aqueous Solution. J. Am. Chem. Soc. 2016, 138, 10766–10769; https://doi.org/10.1021/jacs.6b06177.Suche in Google Scholar PubMed PubMed Central

15. Vasudev, P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala, N.; Balaram, P. Hybrid Peptide Design. Hydrogen Bonded Conformations in Peptides Containing the Stereochemically Constrained γ-Amino Acid Residue, Gabapentin. J. Am. Chem. Soc. 2007, 129, 4039–4048; https://doi.org/10.1021/ja068910p.Suche in Google Scholar PubMed

16. Mathieu, L.; Legrand, B.; Deng, C.; Vezenkov, L.; Wenger, E.; Didierjean, C.; Amblard, M.; Averlant-Petit, M.-C.; Masurier, N.; Lisowski, V.; Martinez, J.; Maillard, L. T. Helical Oligomers of Thiazole-Based γ-Amino Acids: Synthesis and Structural Studies. Angew. Chem. Int. Ed. 2013, 52, 6006–6010; https://doi.org/10.1002/anie.201302106.Suche in Google Scholar PubMed

17. Dutta, A.; Drew, M. G. B.; Pramanik, A. Design of a Turn-Linker-Turn Foldamer by Incorporating Meta-Amino Benzoic Acid in the Middle of a Helix Forming Hexapeptide Sequence: A Helix Breaking Approach. J. Mol. Struct. 2009, 930, 55–59; https://doi.org/10.1016/j.molstruc.2009.04.037.Suche in Google Scholar

18. Dutta, A.; Kar, S.; Fröhlich, R.; Koley, P.; Pramanik, A. A Terminally Modified Pseudopeptide (Gly-M-Aminobenzoic Acid) Produces Supramolecular Helix, Staircase and Water-Mediated βsheet through Self-Assembly. ARKIVOC 2009, ii, 31–43. https://doi.org/10.3998/ark.5550190.0010.204.Suche in Google Scholar

19. Kubik, S.; Goddard, R. A New Cyclic Pseudopeptide Composed of (L)-proline and 3-aminobenzoic Acid Subunits as a Ditopic Receptor for the Simultaneous Complexation of Cations and Anions. J. Org. Chem. 1999, 64, 9475–9486; https://doi.org/10.1021/jo991087d.Suche in Google Scholar

20. Mandal, B.; Giri, R. S. Supramolecular Helical Self-Assembly of Small Peptides. CrystEngComm 2022, 24, 10–32; https://doi.org/10.1039/d1ce01349a.Suche in Google Scholar

21. Dutta, A.; Das, S.; Das, P. Helical Self-assembly of an Unusual Pseudopeptide: Crystallographic Evidence. Z. Kristallogr. 2023, 238, 373–378; https://doi.org/10.1515/zkri-2023-0034.Suche in Google Scholar

22. Dutta, A.; Das, S.; Das, P.; Maity, S.; Ghosh, P.; Biswas, S. S. Unique Supramolecular Assembly of a Synthetic Achiral α, γ-Hybrid Peptide. Z. Kristallogr. 2022, 237, 77–81; https://doi.org/10.1515/zkri-2022-0002.Suche in Google Scholar

23. Dutta, A.; Das, S.; Das, P.; Maity, S.; Ghosh, P. Solid State Self-assembly and Morphology of a Rigid Non-coded γ-Amino Acid Inserted Tripeptide. Z. Kristallogr. 2021, 236, 123–127; https://doi.org/10.1515/zkri-2021-2006.Suche in Google Scholar

24. Bruker. Smart, Saint and Sadabs; Bruker AXS Inc.: Madison, 2000.Suche in Google Scholar

25. Agilent Technologies. CrysAlisPro Version 1.171.37.35; Agilent Technologies UK Ltd: Yarnton, England, 2014.Suche in Google Scholar

26. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122, https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

27. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

28. Farrugia, L. J. WinGX and ORTEP for Windows: an Update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0095).


Received: 2024-07-13
Accepted: 2024-08-25
Published Online: 2024-09-17
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2024-0095/html?lang=de
Button zum nach oben scrollen