Abstract
A protected tripeptide Boc-l-Leu-5-AIA-Aib-OMe was synthesized where 5-aminoisophthalic acid (5-AIA), a rigid non-coded aromatic γ-amino acid is incorporated as central residue. The single crystal X-ray diffraction study indicates that the peptide self-assembles into supramolecular sheet through intermolecular hydrogen bonding interaction N–H⋯O and π ··· π interaction.
Funding source: SERB (DST), INDIA
Award Identifier / Grant number: TAR/2018/000228
Acknowledgments
AD acknowledges laboratory facilities at R. B. C. Evening College, Naihati.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Research funding: PD is grateful to SERB (DST), India for fellowship [No. TAR/2018/000228].
-
Ethical Approval: The local Institutional Review Board deemed the study exempt from review.
References
1. Pieters, B. J. G. E.; van Eldijk, M. B.; Nolte, R. J. M.; Mecinović, J. Natural Supramolecular Protein Assemblies. Chem. Soc. Rev. 2016, 45, 24–39; https://doi.org/10.1039/c5cs00157a.Search in Google Scholar PubMed
2. Sheehan, F.; Sementa, D.; Jain, A.; Kumar, M.; Tayarani-Najjaran, M.; Kroiss, D.; Ulijn, R. V. Peptide-Based Supramolecular Systems Chemistry. Chem. Rev. 2021, 121, 13869–13914; https://doi.org/10.1021/acs.chemrev.1c00089.Search in Google Scholar PubMed
3. Lehn, J.-M. From Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev. 2007, 36, 151–160; https://doi.org/10.1002/chin.200720232.Search in Google Scholar
4. Ulijn, R. V.; Smith, A. M. Designing Peptide Based Nanomaterials. Chem. Soc. Rev. 2008, 37, 664–675; https://doi.org/10.1039/b609047h.Search in Google Scholar PubMed
5. Waters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Pept. Sci. 2004, 76, 435–445; https://doi.org/10.1002/bip.20144.Search in Google Scholar PubMed
6. Haridas, V. Tailoring of Peptide Vesicles: A Bottom-Up Chemical Approach. Acc. Chem. Res. 2021, 54, 1934–1949; https://doi.org/10.1021/acs.accounts.0c00690.Search in Google Scholar PubMed
7. Kassem, S.; Ulijn, R. V. Designed Complex Peptide-Based Adaptive Systems: A Bottom-Up Approach. ChemSystemsChem 2022, 5, e202200040; https://doi.org/10.1002/syst.202200040.Search in Google Scholar
8. Gellman, S. H. Foldamers: A Manifesto. Acc. Chem. Res. 1998, 31, 173–180; https://doi.org/10.1021/ar960298r.Search in Google Scholar
9. Seebach, D.; Gardiner, J. β-Peptidic Peptidomimetics. Acc. Chem. Res. 2008, 41, 1366–1375; https://doi.org/10.1021/ar700263g.Search in Google Scholar PubMed
10. Liskamp, R. M. J.; Rijkers, D. T. S.; Kruijtzer, J. A. W.; Kemmink, J. Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics. ChemBioChem 2011, 12, 1626–1653; https://doi.org/10.1002/cbic.201000717.Search in Google Scholar PubMed
11. Sang, P.; Cai, J. Unnatural Helical Peptidic Foldamers as Protein Segment Mimics. Chem. Soc. Rev. 2023, 52, 4843–4877; https://doi.org/10.1039/d2cs00395c.Search in Google Scholar PubMed PubMed Central
12. Martinek, T. A.; Fülöp, F. Peptidic Foldamers: Ramping up Diversity. Chem. Soc. Rev. 2012, 41, 687–702; https://doi.org/10.1039/c1cs15097a.Search in Google Scholar PubMed
13. Bouillère, F.; Thétiot-Laurent, S.; Kouklovsky, C.; Alezra, V. Foldamers Containing γ-amino Acid Residues or Their Analogues: Structural Features and Applications. Amino Acids 2011, 41, 687–707; https://doi.org/10.1007/s00726-011-0893-3.Search in Google Scholar PubMed
14. Fisher, B. F.; Gellman, S. H. Impact of γ-Amino Acid Residue Preorganization on α/γ-peptide Foldamer Helicity in Aqueous Solution. J. Am. Chem. Soc. 2016, 138, 10766–10769; https://doi.org/10.1021/jacs.6b06177.Search in Google Scholar PubMed PubMed Central
15. Vasudev, P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala, N.; Balaram, P. Hybrid Peptide Design. Hydrogen Bonded Conformations in Peptides Containing the Stereochemically Constrained γ-Amino Acid Residue, Gabapentin. J. Am. Chem. Soc. 2007, 129, 4039–4048; https://doi.org/10.1021/ja068910p.Search in Google Scholar PubMed
16. Mathieu, L.; Legrand, B.; Deng, C.; Vezenkov, L.; Wenger, E.; Didierjean, C.; Amblard, M.; Averlant-Petit, M.-C.; Masurier, N.; Lisowski, V.; Martinez, J.; Maillard, L. T. Helical Oligomers of Thiazole-Based γ-Amino Acids: Synthesis and Structural Studies. Angew. Chem. Int. Ed. 2013, 52, 6006–6010; https://doi.org/10.1002/anie.201302106.Search in Google Scholar PubMed
17. Dutta, A.; Drew, M. G. B.; Pramanik, A. Design of a Turn-Linker-Turn Foldamer by Incorporating Meta-Amino Benzoic Acid in the Middle of a Helix Forming Hexapeptide Sequence: A Helix Breaking Approach. J. Mol. Struct. 2009, 930, 55–59; https://doi.org/10.1016/j.molstruc.2009.04.037.Search in Google Scholar
18. Dutta, A.; Kar, S.; Fröhlich, R.; Koley, P.; Pramanik, A. A Terminally Modified Pseudopeptide (Gly-M-Aminobenzoic Acid) Produces Supramolecular Helix, Staircase and Water-Mediated βsheet through Self-Assembly. ARKIVOC 2009, ii, 31–43. https://doi.org/10.3998/ark.5550190.0010.204.Search in Google Scholar
19. Kubik, S.; Goddard, R. A New Cyclic Pseudopeptide Composed of (L)-proline and 3-aminobenzoic Acid Subunits as a Ditopic Receptor for the Simultaneous Complexation of Cations and Anions. J. Org. Chem. 1999, 64, 9475–9486; https://doi.org/10.1021/jo991087d.Search in Google Scholar
20. Mandal, B.; Giri, R. S. Supramolecular Helical Self-Assembly of Small Peptides. CrystEngComm 2022, 24, 10–32; https://doi.org/10.1039/d1ce01349a.Search in Google Scholar
21. Dutta, A.; Das, S.; Das, P. Helical Self-assembly of an Unusual Pseudopeptide: Crystallographic Evidence. Z. Kristallogr. 2023, 238, 373–378; https://doi.org/10.1515/zkri-2023-0034.Search in Google Scholar
22. Dutta, A.; Das, S.; Das, P.; Maity, S.; Ghosh, P.; Biswas, S. S. Unique Supramolecular Assembly of a Synthetic Achiral α, γ-Hybrid Peptide. Z. Kristallogr. 2022, 237, 77–81; https://doi.org/10.1515/zkri-2022-0002.Search in Google Scholar
23. Dutta, A.; Das, S.; Das, P.; Maity, S.; Ghosh, P. Solid State Self-assembly and Morphology of a Rigid Non-coded γ-Amino Acid Inserted Tripeptide. Z. Kristallogr. 2021, 236, 123–127; https://doi.org/10.1515/zkri-2021-2006.Search in Google Scholar
24. Bruker. Smart, Saint and Sadabs; Bruker AXS Inc.: Madison, 2000.Search in Google Scholar
25. Agilent Technologies. CrysAlisPro Version 1.171.37.35; Agilent Technologies UK Ltd: Yarnton, England, 2014.Search in Google Scholar
26. Sheldrick, G. M. A Short History of Shelx. Acta Crystallogr. 2008, A64, 112–122, https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed
27. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
28. Farrugia, L. J. WinGX and ORTEP for Windows: an Update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0095).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Synthesis, characterization and structure-property relations in mullite-type Pb2(Pb1−xSn x )O4 solid solution
- Temperature-dependent diffraction studies on the stannides Sr3Rh4Sn4, Sr3Ir4Sn4 and Sr2.43Eu0.57Ir4Sn4
- Organic and Metalorganic Crystal Structures (Original Paper)
- The crystal and molecular structure of (R)-sirtinol – C26H22N2O2 – a chemo-sensitive enhancer and ligand in metal complexes with important bio-inorganic applications
- Synthesis and structural characterization of supramolecular cocrystals of [(4-cyano-1-methylpyridinium)2-(18-crown-6)] diiodide
- 1-Nitronaphthalene, a non-OD, non-MDO polytype
- Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Synthesis, characterization and structure-property relations in mullite-type Pb2(Pb1−xSn x )O4 solid solution
- Temperature-dependent diffraction studies on the stannides Sr3Rh4Sn4, Sr3Ir4Sn4 and Sr2.43Eu0.57Ir4Sn4
- Organic and Metalorganic Crystal Structures (Original Paper)
- The crystal and molecular structure of (R)-sirtinol – C26H22N2O2 – a chemo-sensitive enhancer and ligand in metal complexes with important bio-inorganic applications
- Synthesis and structural characterization of supramolecular cocrystals of [(4-cyano-1-methylpyridinium)2-(18-crown-6)] diiodide
- 1-Nitronaphthalene, a non-OD, non-MDO polytype
- Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid