Abstract
The crystal structures of both Pb2PbO4 (Pb3O4) and Pb2SnO4 at room temperature can be described using mullite-type setting in the space groups P42/mbc and Pbam, respectively. At what chemical extend the crystal structure prefers either of the space groups would be an excellent playground in the Pb2(Pb1−xSn x )O4 solid solution. Members of the solid solutions have been prepared by solid-state reactions carried out in sealed quartz tubes. Each sample has been found to be phase pure confirmed by X-ray powder diffraction data Rietveld refinement. Samples with higher tin content require higher synthesis temperatures, and controlled decomposition of Pb3O4 serves as the source for both Pb2+ and Pb4+ cations. Since the Pb4+ cation is larger than Sn4+, the MO6 polyhedral volume decreases with increasing Sn-content. As such, each metric parameter shows a linear trend following Vegard’s rule. The concomitant contraction of the MO6 octahedra and the high stereo-chemical activity of the 6s2 lone electron pairs of lead in the Pb2+O4 distorted pyramid results in symmetry reduction. DFT suggests dynamical instability of the tetragonal Pb3O4 while Pb2SnO4 keeps orthorhombic symmetry at low temperatures, which agrees well with the experimental findings. The global blue shift of the vibrational mode frequencies is explained by the quasi-harmonic approach. The indirect band-gap linearly increases from 2.1(1) eV (x = 0) to a maximum value of 2.5(1) eV for x = 0.8 followed by a sharp drop towards Pb2SnO4. Thermogravimetric analysis demonstrates higher thermal stability with increasing Sn-content, which is explained in terms of higher bond strength of Sn–O than that of Pb–O in the MO6 octahedra.
Acknowledgements
We gratefully acknowledge the German science foundation (Deutsche Forschungsgemeinschaft, DFG) under grant number GE1981/18-1 (project-ID: 514924554) for the financial support of this project and for shared funding of the FTIR-Spectrometer INST144/521-1 FUGG and the computer cluster “lesum” INST144/506-1 FUGG within large instrument application. MF acknowledges funding by the DFG through a Heisenberg fellowship (project-ID: 455871835).
-
Ethical approval: The local Institutional Review Board deemed the study exempt from review.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors hereby state no conflict of interest.
-
Research funding: German Science Foundation (Deutsche Forschungsgemeinschaft, DFG).
References
1. Ross, C. B.; Wood, D. R.; Scholl, P. S. Series Limit and Hydrogenlike Series in PbII. J. Opt. Soc. Am. 1976, 66 (1), 36–39; https://doi.org/10.1364/josa.66.000036.Search in Google Scholar
2. Hanni, M. E.; Keele, J. A.; Lundeen, S. R.; Fehrenbach, C. W.; Sturrus, W. G. Polarizabilities of Pb2+ and Pb4+ and Ionization Energies of Pb+ and Pb3+ from Spectroscopy of High-L Rydberg States of Pb+ and Pb3+. Phys. Rev. A 2010, 81 (4), 042512; https://doi.org/10.1103/physreva.81.042512.Search in Google Scholar
3. Blair, T. L. Lead Oxide Technology – Past, Present, and Future. J. Pow. Sour. 1998, 73, 47–55; https://doi.org/10.1016/s0378-7753(97)02781-x.Search in Google Scholar
4. Nabilah Razali, N. A.; Shahrim Mustafa, I.; Noor Azman, N. Z.; Kamari, H. M.; Mat Hashim, I. S.; Ahmad, N.; Norazam, N. A.; Shahira Che Asudin, C. A. Physical and Shielding Protection Parameterization of PbO-ZnO-B2o3-SiO2 Glass Network. J. Phys.: Conf. Ser. 2018, 1083, 012005; https://doi.org/10.1088/1742-6596/1083/1/012005.Search in Google Scholar
5. Sharma, G.; Singh, K.; Manupriya; Mohan, S.; Singh, H.; Bindra, S. Effects of Gamma Irradiation on Optical and Structural Properties of PbO–Bi2O3–B2O3 Glasses. J. Rad. Phys. Chem. 2006, 75 (9), 959–966; https://doi.org/10.1016/j.radphyschem.2006.02.008.Search in Google Scholar
6. Zhou, Q.; Zhou, X.; Zheng, R.; Liu, Z.; Wang, J. Application of Lead Oxide Electrodes in Wastewater Treatment: A Review. J. Sci. Tot. Env. 2022, 806, 150088; https://doi.org/10.1016/j.scitotenv.2021.150088.Search in Google Scholar PubMed
7. Gerber, G. B.; Léonard, A.; Jacquet, P. Toxicity, Mutagenicity and Teratogenicity of Lead. Mutat. Res. 1980, 76 (2), 115–141; https://doi.org/10.1016/0165-1110(80)90006-8.Search in Google Scholar PubMed
8. Shannon, R. D.; Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr. B 1969, 25 (5), 925–946; https://doi.org/10.1107/s0567740869003220.Search in Google Scholar
9. Shannon, R. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A 1976, 32 (5), 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
10. Byström, A.; Westgren, A. Crystal Structure of Pb3O4 and SnPb2O4. Ark. Kemi Mineral. Och Geol. 1943, B16, 1–7.Search in Google Scholar
11. Krenner, J. A. Schafarzikite, ein neues Mineral. Z. Kristallogr. 1921, 56, 198–200.Search in Google Scholar
12. Tokody, L. VI. Beiträge zur Kenntnis der kristallographischen und physikalischen Eigenschaften des Schafarzikits. Z. Kristallogr. 1925, 62 (1–6), 123–126; https://doi.org/10.1524/zkri.1925.62.1.123.Search in Google Scholar
13. Fischer, R. X.; Schneider, H.; Rahman, S.; Freimann, S. Crystal Chemistry of Mullite and Related Phases: Sections 1.1–1.2. In Mullite; Wiley-VCH: Weinheim, 2005; pp. 1–70.10.1002/3527607358.ch1aSearch in Google Scholar
14. Gavarri, J.-R.; Weigel, D.; Oxydes de Plomb, I. Structure cristalline du minium Pb3O4, à température ambiante (293 K). J. Solid State Chem. 1975, 13 (3), 252–257; https://doi.org/10.1016/0022-4596(75)90127-9.Search in Google Scholar
15. Garnier, P.; Berar, J. F.; Calvarin, G. Calorimetric Study of Lead Oxide Pb3O4. J. Mater. Res. Bull. 1979, 14, 1275–1279; https://doi.org/10.1016/0025-5408(79)90004-7.Search in Google Scholar
16. Gavarri, J. R.; Calvarin, G.; Weigel, D. Lead Oxides .2. Structural Study of Orthorhombic Phase of Oxide Pb3O4. J. Solid State Chem. 1975, 14 (1), 91–98; https://doi.org/10.1016/0022-4596(75)90365-5.Search in Google Scholar
17. Garnier, P.; Calvarin, G.; Weigel, D. Lead Oxides .3. X-Ray-Diffraction Study of Ferroelectric and Ferroelastic Transition Powder – Pb3O4. J. Solid State Chem. 1976, 16 (1–2), 55–62; https://doi.org/10.1016/0022-4596(76)90007-4.Search in Google Scholar
18. Gavarri, J. R.; Weigel, D. Modèles analytiques d’évolution structurale: calcul des paramètres de la maille orthorhombique de Pb3O4 en fonction de la température. Acta Crystallogr. A 1982, 38, 195–200; https://doi.org/10.1107/s0567739482000448.Search in Google Scholar
19. Gavarri, J. R.; Weigel, D.; Hewat, A. W. Lead Oxides. IV. Structural Evolution of Pb3O4 between 240 and 5 K and Transition Mechanism. J. Solid State Chem. 1978, 23 (3–4), 327–339; https://doi.org/10.1016/0022-4596(78)90081-6.Search in Google Scholar
20. Dinnebier, R. E.; Carlson, S.; Hanfland, M.; Jansen, M. Bulk Moduli and High-Pressure Crystal Structures of Minium, Pb3O4, Determined by X-Ray Powder Diffraction. Am. Mineral. 2003, 88, 996–1002; https://doi.org/10.2138/am-2003-0707.Search in Google Scholar
21. Leineweber, A.; Dinnebier, R. E. Anisotropic Microstrain Broadening of Minium, Pb3O4, in a High-Pressure Cell: Interpretation of Line-Width Parameters in Terms of Stress Variations. J. Appl. Crystallogr. 2010, 43, 17–26; https://doi.org/10.1107/s002188980904758x.Search in Google Scholar
22. Trömel, M. Zur Struktur der Verbindungen vom Sr2PbO4-Typ. Naturwissenschaften 1965, 52 (17), 492–493; https://doi.org/10.1007/bf00646570.Search in Google Scholar
23. Kühn, H. Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 2; National Gallery of Art: Washington, 1993.Search in Google Scholar
24. Gavarri, J. R.; Vigouroux, J. P.; Calvarin, G.; Hewat, A. W. Structure de SnPb2O4 à quatre températures: relation entre dilatation et agitation thermiques. J. Solid State Chem. 1981, 36 (1), 81–90; https://doi.org/10.1016/0022-4596(81)90194-8.Search in Google Scholar
25. Graf, G. G., Tin Alloys, and Tin Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000.10.1002/14356007.a27_049Search in Google Scholar
26. Murshed, M. M.; Fischer, R. X.; Gesing, T. M. The Role of the Pb2+ Lone Electron Pair for Bond Valence Sum Analysis in Mullite-type PbMBO4 (M = Al, Mn and Fe) Compounds. Z. Kristallogr. 2012, 227 (8), 580–584; https://doi.org/10.1524/zkri.2012.1483.Search in Google Scholar
27. Murshed, M. M.; Nénert, G.; Gesing, T. M. Crystal Structure of Mullite-type PbMn0.5Al0.5BO4 Determined by Combined X-Ray and Neutron Diffraction Data. Z. Kristallogr.-New Cryst. Struct. 2012, 227 (3), 285–286; https://doi.org/10.1524/ncrs.2012.0181.Search in Google Scholar
28. Gesing, T. M.; Mendive, C. B.; Curti, M.; Hansmann, D.; Nénert, G.; Kalita, P. E.; Lipinska, K. E.; Huq, A.; Cornelius, A. L.; Murshed, M. M. Structural Properties of Mullite-type Pb(Al1–xMnx)BO4. Z. Kristallogr. 2013, 228 (10), 532–543; https://doi.org/10.1524/zkri.2013.1640.Search in Google Scholar
29. Vigouroux, J. P.; Husson, E.; Calvarin, G.; Dao, N. Q. Etude par spectroscopié vibrationnelle des oxydes Pb3O4, SnPb2O4 et SnPb(Pb2O4)2. Spectrochim. Acta A 1981, 38, 393–398; https://doi.org/10.1016/0584-8539(82)80013-5.Search in Google Scholar
30. Spahr, D.; Stekiel, M.; Zimmer, D.; Bayarjargal, L.; Bunk, K.; Morgenroth, W.; Milman, V.; Refson, K.; Jochym, D.; Byrne, P. J. P.; Winkler, B. Pressure-Induced Pb-Pb and Phase Transition in Pb2SnO4. Acta Crystallogr. B 2020, 76, 979–991; https://doi.org/10.1107/s205252062001238x.Search in Google Scholar PubMed PubMed Central
31. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.; Paretzkin, B. Lead Tin Oxide, Pb2SnO4. Natl. Bur. Stand. (U. S.) Monogr. 1972, 25 (10), 29–30.Search in Google Scholar
32. Wang, X.; Liebau, F. Influence of Lone-Pair Electrons of Cations on Bond-Valence Parameters. Z. Kristallogr. 1996, 211 (7), 437–439.10.1524/zkri.1996.211.7.437Search in Google Scholar
33. Wang, X.; Liebau, F. Studies on Bond and Atomic Valences. I. Correlation between Bond Valence and Bond Angles in SbIII Chalcogen Compounds: The Influence of Lone-Electron Pairs. Acta Crystallogr. B 1996, 52 (1), 7–15; https://doi.org/10.1107/s0108768195004472.Search in Google Scholar
34. Liebau, F.; Wang, X. Stoichiometric Valence versus Structural Valence: Conclusions Drawn from a Study of the Influence of Polyhedron Distortion on Bond Valence Sums. Z. Kristallogr. 2005, 220 (7), 589–591; https://doi.org/10.1524/zkri.220.7.589.67103.Search in Google Scholar
35. Wang, X.; Liebau, F. Influence of Polyhedron Distortions on Calculated Bond-Valence Sums for Cations with One Lone Electron Pair. Acta Crystallogr. B 2007, 63 (2), 216–228; https://doi.org/10.1107/s0108768106055911.Search in Google Scholar PubMed
36. Wang, X.; Liebau, F. On the Optimization of Bond-Valence Parameters: Artifacts Conceal Chemical Effects. Acta Crystallogr. B 2009, 65 (1), 96–98; https://doi.org/10.1107/s010876810804086x.Search in Google Scholar PubMed
37. Gesing, T. M.; Robben, L. Determination of the Average Crystallite Size and the Crystallite Size Distribution: The Envelope Function Approach EnvACS. J. Appl. Crystallogr. 2024. Submitted.10.1107/S1600576724007362Search in Google Scholar
38. Juhas, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. PDFgetX3: A Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions. J. Appl. Crystallogr. 2013, 46 (2), 560–566; https://doi.org/10.1107/s0021889813005190.Search in Google Scholar
39. Rachinger, W. A Correction for the α1 α2 Doublet in the Measurement of Widths of X-Ray Diffraction Lines. Journal of Scientific Instruments 1948, 25, 254–255; https://doi.org/10.1088/0950-7671/25/7/125.Search in Google Scholar
40. Gesing, T. M.; Murshed, M. M.; Schuh, S.; Thüringer, O.; Krämer, K.; Neudecker, T.; Mendive, C. B.; Robben, L. Nano-crystalline Precursor Formation, Stability, and Transformation to Mullite-type Visible-Light Photocatalysts. J. Mat. Sci. 2022, 57 (41), 19280–19299; https://doi.org/10.1007/s10853-022-07854-w.Search in Google Scholar
41. Ghosh, K.; Murshed, M. M.; Fischer, M.; Gesing, T. M. Aluminum to Germanium Inversion in Mullite-type RAlGeO5: Characterization of a Rare Phenomenon for R = Y, Sm–Lu. J. Am. Ceram. Soc. 2022, 105 (1), 728–741; https://doi.org/10.1111/jace.18085.Search in Google Scholar
42. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr. 2005, 220 (5–6), 567–570; https://doi.org/10.1524/zkri.220.5.567.65075.Search in Google Scholar
43. Refson, K.; Tulip, P. R.; Clark, S. J. Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Phys. Rev. B 2006, 73 (15), 155114; https://doi.org/10.1103/physrevb.73.155114.Search in Google Scholar
44. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100 (13), 136406; https://doi.org/10.1103/physrevlett.100.136406.Search in Google Scholar
45. Porezag, D.; Pederson, M. R. Infrared Intensities and Raman-Scattering Activities within Density-Functional Theory. Phys. Rev. B 1996, 54 (11), 7830–7836; https://doi.org/10.1103/physrevb.54.7830.Search in Google Scholar PubMed
46. Gonze, X. First-Principles Responses of Solids to Atomic Displacements and Homogeneous Electric Fields: Implementation of a Conjugate-Gradient Algorithm. Phys. Rev. B 1997, 55 (16), 10337–10354; https://doi.org/10.1103/physrevb.55.10337.Search in Google Scholar
47. Bach, H.; Schroeder, H.; Schaeffer, H. A. The Reaction Behaviour of Thin Lead Oxide Layers on Silica Glass. Thin Solid Films 1978, 48, 201–213; https://doi.org/10.1016/0040-6090(78)90242-0.Search in Google Scholar
48. Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5 (1), 17–26; https://doi.org/10.1007/bf01349680.Search in Google Scholar
49. Kroumova, E.; Aroyo, M. I.; Perez-Mato, J. M.; Kirov, A.; Capillas, C.; Ivantchev, S.; Wondratschek, H. Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transit. 2003, 76 (1–2), 155–170; https://doi.org/10.1080/0141159031000076110.Search in Google Scholar
50. Burgio, L.; Clark, R. J. H. Library of FT-Raman Spectra of Pigments, Minerals, Pigment Media and Varnishes, and Supplement to Existing Library of Raman Spectra of Pigments with Visible Excitation. Spectrochim. Acta 2001, 57, 1491–1521; https://doi.org/10.1016/s1386-1425(00)00495-9.Search in Google Scholar PubMed
51. Terpstra, H. J.; De Groot, R. A.; Haas, C. The Electronic Structure of the Mixed Valence Compound Pb3O4. J. Phys. Chem. Solids 1997, 58 (4), 561–566; https://doi.org/10.1016/s0022-3697(96)00165-5.Search in Google Scholar
52. Haynes, W. M.; Lide, D. R.; Bruno, T. J. In Section 9: Molecular Structure and Spectroscopy, CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2014; pp. 65–96.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0088).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Synthesis, characterization and structure-property relations in mullite-type Pb2(Pb1−xSn x )O4 solid solution
- Temperature-dependent diffraction studies on the stannides Sr3Rh4Sn4, Sr3Ir4Sn4 and Sr2.43Eu0.57Ir4Sn4
- Organic and Metalorganic Crystal Structures (Original Paper)
- The crystal and molecular structure of (R)-sirtinol – C26H22N2O2 – a chemo-sensitive enhancer and ligand in metal complexes with important bio-inorganic applications
- Synthesis and structural characterization of supramolecular cocrystals of [(4-cyano-1-methylpyridinium)2-(18-crown-6)] diiodide
- 1-Nitronaphthalene, a non-OD, non-MDO polytype
- Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Synthesis, characterization and structure-property relations in mullite-type Pb2(Pb1−xSn x )O4 solid solution
- Temperature-dependent diffraction studies on the stannides Sr3Rh4Sn4, Sr3Ir4Sn4 and Sr2.43Eu0.57Ir4Sn4
- Organic and Metalorganic Crystal Structures (Original Paper)
- The crystal and molecular structure of (R)-sirtinol – C26H22N2O2 – a chemo-sensitive enhancer and ligand in metal complexes with important bio-inorganic applications
- Synthesis and structural characterization of supramolecular cocrystals of [(4-cyano-1-methylpyridinium)2-(18-crown-6)] diiodide
- 1-Nitronaphthalene, a non-OD, non-MDO polytype
- Synthesis and crystal structure of a tripeptide comprising a centrally placed non-coded aromatic γ-amino acid