Startseite The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy

  • Aylin Koldemir , Josef Maximilian Gerdes , Maximilian Kai Reimann , Michael Ryan Hansen EMAIL logo und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 19. Dezember 2023

Abstract

The silicides ScT2Si2 (T = Ru, Rh, Os) were synthesized by arc-melting of the elements and subsequent annealing in sealed silica ampoules. They crystallize with the rarely observed HfFe2Si2 type structure, space group Pbcm. The structures of ScRu2Si2 (a = 761.64(4), b = 730.70(6), c = 521.07(6) pm, wR = 0.0314, 633 F2 values, 31 variables) and ScOs2Si2 (a = 771.10(8), b = 736.68(7), c = 521.88(5) pm, wR = 0.0479, 623 F2 values, 31 variables) were refined from single crystal X-ray diffractometer data. The refinements showed small degrees of Ru/Si respectively Os/Si mixing on one 4c site, leading to the refined compositions ScRu1.96(1)Si2.04(1) and ScOs1.91(1)Si2.09(1). The monomeric building units in both structures are two slightly distorted, crystallographically independent RuSi5 respectively OsSi5 square pyramids, which are condensed via common edges. The resulting densely packed [Ru2Si2] and [Os2Si2] networks leave voids for the scandium atoms with coordination number 18: Sc@Si8Ru8Sc2 and Sc@Si8Os8Sc2. Temperature dependent magnetic susceptibility measurements of ScRu2Si2 and ScOs2Si2 indicate Pauli paramagnetism. Solid-state 29Si and 45Sc static and MAS NMR spectroscopy reveal significant Knight shifts and a strong influence of the T/Si mixing on the experimental NMR line shapes. A larger overall 29Si magnetic shift for ScRu2Si2 compared to ScOs2Si2, although with a negative sign for one of the 29Si resonances, suggests stronger paramagnetic effects for ScRu2Si2, in agreement with the magnetic susceptibility measurements.


Corresponding authors: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail: ; and Michael Ryan Hansen, Institut für Physikalische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collections.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Hoffmann, R., Zheng, C. J. Phys. Chem. 1985, 89, 4175–4181; https://doi.org/10.1021/j100266a007.Suche in Google Scholar

2. Just, G., Paufler, P. J. Alloys Compd. 1996, 232, 1–25; https://doi.org/10.1016/0925-8388(95)01939-1.Suche in Google Scholar

3. Shatruk, M. J. Solid State Chem. 2019, 272, 198–209; https://doi.org/10.1016/j.jssc.2019.02.012.Suche in Google Scholar

4. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Suche in Google Scholar

5. Andress, K. R., Alberti, E. Z. Metallkd. 1935, 27, 126–128.10.1163/187124035X00090Suche in Google Scholar

6. Ban, Z., Sikirica, M. Acta Crystallogr. 1965, 18, 594–599; https://doi.org/10.1107/s0365110x6500141x.Suche in Google Scholar

7. Lai, Y., Chan, J. Y., Baumbach, R. E. Sci. Adv. 2022, 8, eabp8264; https://doi.org/10.1126/sciadv.abp8264.Suche in Google Scholar PubMed PubMed Central

8. Parthé, E., Chabot, B., Braun, H. F., Engel, N. Acta Crystallogr. 1983, B39, 588–595.10.1107/S010876818300302XSuche in Google Scholar

9. Kußmann, D., Pöttgen, R., Rodewald, U. Ch., Rosenhahn, C., Mosel, B. D., Kotzyba, G., Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Suche in Google Scholar

10. Johnston, D. C. Adv. Phys. 2010, 59, 803–1061; https://doi.org/10.1080/00018732.2010.513480.Suche in Google Scholar

11. Johrendt, D., Hosono, H., Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2011, 226, 435–446; https://doi.org/10.1524/zkri.2011.1363.Suche in Google Scholar

12. Kneidinger, F., Salamakha, L., Bauer, E., Zeiringer, I., Rogl, P., Blaas-Schenner, C., Reith, D., Podloucky, R. Phys. Rev. B 2014, 90, 024504; https://doi.org/10.1103/physrevb.90.024504.Suche in Google Scholar

13. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Suche in Google Scholar

14. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262.10.1515/znb-2021-0022Suche in Google Scholar

15. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Suche in Google Scholar

16. Rühl, R., Jeitschko, W. Mater. Res. Bull. 1979, 14, 513–517; https://doi.org/10.1016/0025-5408(79)90194-6.Suche in Google Scholar

17. Peng, W., Chanakian, S., Zevalkink, A. Inorg. Chem. Front. 2018, 5, 1744–1759; https://doi.org/10.1039/c7qi00813a.Suche in Google Scholar

18. Stoyko, S. S., Blanchard, P. E. R., Ramachandran, K. K., Mar, A. J. Solid State Chem. 2019, 269, 100–106; https://doi.org/10.1016/j.jssc.2018.09.021.Suche in Google Scholar

19. Yarmolyuk, Y. P., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1976, 21, 473–475.Suche in Google Scholar

20. Gladyshevskii, E. I., Kotur, B. Y., Bodak, O. I., Skvorchuk, V. P. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1977, 751–754.Suche in Google Scholar

21. Kotur, B. Y., Dobryanskaya, D. O., Shcherba, I. D. Tezizy Dokl. Vses. Konf. Kristallokhim. Intermet. Soeden., 5th, 1989; p. 161.Suche in Google Scholar

22. Shcherba, I. D., Kotur, B. Y. Sov. Phys. Crystallogr. 1990, 35, 136–138.Suche in Google Scholar

23. Kotur, B. Y., Cerny, R., Pacheco, J. V., Yvon K. Z. Kristallogr. NCS 1997, 212, 289; https://doi.org/10.1524/ncrs.1997.212.1.289.Suche in Google Scholar

24. Felner, I., Mayer, I., Grill, A., Schieber, M. Solid State Commun. 1975, 16, 1005–1009; https://doi.org/10.1016/0038-1098(75)90640-7.Suche in Google Scholar

25. Umarji, A. M., Noakes, D. R., Viccaro, P. J., Shenoy, G. K., Aldred, A. T., Niarchos, D. J. Magn. Magn. Mater. 1983, 36, 61–65; https://doi.org/10.1016/0304-8853(83)91044-2.Suche in Google Scholar

26. Shcherba, I., Sacharevych, M., Savyckyj, N., Antonov, V., Jatcyk, B. J. Mater. Sci. Eng. B 2015, 5, 42–49.Suche in Google Scholar

27. Shcherba, I. D., Antonov, V. N., Zhak, O. V., Bekenov, L. V., Kovalska, M. V., Noga, H., Uskokovic, D., Yatcyk, B. M. J. Phys. Stud. 2019, 23, 2301; https://doi.org/10.30970/jps.23.2301.Suche in Google Scholar

28. Skolozdra, R. V., Stadnyk, Yu. V., Gorelenko, Yu. K., Yarmolyuk, Ya. P., Kruglyashov, S. B. Fiz. Met. Metalloved. 1983, 55, 479–483.Suche in Google Scholar

29. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Suche in Google Scholar

30. Hoffmann, R.-D., Rodewald, U. Ch., Haverkamp, S., Benndorf, C., Eckert, H., Heying, B., Pöttgen, R. Solid State Sci. 2017, 72, 109–115; https://doi.org/10.1016/j.solidstatesciences.2017.07.017.Suche in Google Scholar

31. Harmening, T., Al Alam, A., Matar, S. F., Eckert, H., Pöttgen, R. Solid State Sci. 2009, 11, 1239–1245; https://doi.org/10.1016/j.solidstatesciences.2009.03.015.Suche in Google Scholar

32. Harmening, T., Mohr, D., Eckert, H., Al Alam, A., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 1839–1850; https://doi.org/10.1002/zaac.200900529.Suche in Google Scholar

33. Kotur, B. Y. Visn. Lviv. Derzh. Univ., Ser. Khim. 1984, 25, 20–21.Suche in Google Scholar

34. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar

35. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

36. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Suche in Google Scholar PubMed

37. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar

38. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar

39. ORIGINPRO 2016G (version 9.3.2.303), OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Suche in Google Scholar

40. CORELDRAW Graphics Suite 2017 (version 19.0.0.328), Corel Corporation: Ottawa, Ontario (Canada), 2017.Suche in Google Scholar

41. Koppe, J., Bußkamp, M., Hansen, M. R. J. Phys. Chem. A 2021, 125, 5643–5649; https://doi.org/10.1021/acs.jpca.1c02958.Suche in Google Scholar PubMed

42. O’Dell, L. A., Schurko, R. W. Chem. Phys. Lett. 2008, 464, 97–102; https://doi.org/10.1016/j.cplett.2008.08.095.Suche in Google Scholar

43. O’Dell, L. A., Rossini, A. J., Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330–335; https://doi.org/10.1016/j.cplett.2008.12.044.Suche in Google Scholar

44. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. K. H., Marks, L. D. J. Chem. Phys. 2020, 152, 074101; https://doi.org/10.1063/1.5143061.Suche in Google Scholar PubMed

45. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

46. Zhao, J. T., Parthé, E. Acta Crystallogr. 1991, C47, 1781–1784.10.1107/S0108270191003037Suche in Google Scholar

47. Flandorfer, H., Kaczorowski, D., Gröbner, J., Rogl, P., Wouters, R., Godart, C., Kostikas, A. J. Solid State Chem. 1998, 137, 191–205; https://doi.org/10.1006/jssc.1997.7660.Suche in Google Scholar

48. Cordier, G., Woll, P., Schäfer, H. J. Less-Common Met. 1982, 86, 129–136; https://doi.org/10.1016/0022-5088(82)90197-7.Suche in Google Scholar

49. Xia, S.-Q., Bobev, S. J. Solid State Chem. 2006, 179, 3371–3377; https://doi.org/10.1016/j.jssc.2006.07.003.Suche in Google Scholar

50. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

51. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Suche in Google Scholar

52. Cenzual, K., Gladyshevskii, R. E., Parthé, E. Acta Crystallogr. C 1992, 48, 225–228; https://doi.org/10.1107/s010827019100968x.Suche in Google Scholar

53. Kawai, T., Muranaka, H., Measson, M.-A., Shimoda, T., Doi, Y., Matsuda, T. D., Haga, Y., Knebel, G., Lapertot, G., Aoki, D., Flouquet, J., Takeuchi, T., Settai, R., Ōnuki, Y. J. Phys. Soc. Jpn. 2008, 77, 064716; https://doi.org/10.1143/jpsj.77.064716.Suche in Google Scholar

54. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

55. Prakash, J., Mesbah, A., Beard, J. C., Malliakas, C. D., Ibers, J. A. J. Solid State Chem. 2016, 233, 90–94; https://doi.org/10.1016/j.jssc.2015.10.003.Suche in Google Scholar

56. Haeberlen, U. In: Advances in Magnetic Resonance, Suppl. 1; Waugh, J. S., Ed. Academic Press: New York, 1976.Suche in Google Scholar

57. Mehring, M. Principles of High Resolution NMR in Solids, 2nd ed.; Springer Verlag: Berlin, 1983.10.1007/978-3-642-68756-3Suche in Google Scholar

58. Spiess, H. W. In: NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds. Springer Verlag, Berlin, Vol. 15, 1978.Suche in Google Scholar

Received: 2023-10-24
Accepted: 2023-11-22
Published Online: 2023-12-19
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0048/html?lang=de
Button zum nach oben scrollen