The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
-
Aylin Koldemir
und Rainer Pöttgen
Abstract
The silicides ScT2Si2 (T = Ru, Rh, Os) were synthesized by arc-melting of the elements and subsequent annealing in sealed silica ampoules. They crystallize with the rarely observed HfFe2Si2 type structure, space group Pbcm. The structures of ScRu2Si2 (a = 761.64(4), b = 730.70(6), c = 521.07(6) pm, wR = 0.0314, 633 F2 values, 31 variables) and ScOs2Si2 (a = 771.10(8), b = 736.68(7), c = 521.88(5) pm, wR = 0.0479, 623 F2 values, 31 variables) were refined from single crystal X-ray diffractometer data. The refinements showed small degrees of Ru/Si respectively Os/Si mixing on one 4c site, leading to the refined compositions ScRu1.96(1)Si2.04(1) and ScOs1.91(1)Si2.09(1). The monomeric building units in both structures are two slightly distorted, crystallographically independent RuSi5 respectively OsSi5 square pyramids, which are condensed via common edges. The resulting densely packed [Ru2Si2] and [Os2Si2] networks leave voids for the scandium atoms with coordination number 18: Sc@Si8Ru8Sc2 and Sc@Si8Os8Sc2. Temperature dependent magnetic susceptibility measurements of ScRu2Si2 and ScOs2Si2 indicate Pauli paramagnetism. Solid-state 29Si and 45Sc static and MAS NMR spectroscopy reveal significant Knight shifts and a strong influence of the T/Si mixing on the experimental NMR line shapes. A larger overall 29Si magnetic shift for ScRu2Si2 compared to ScOs2Si2, although with a negative sign for one of the 29Si resonances, suggests stronger paramagnetic effects for ScRu2Si2, in agreement with the magnetic susceptibility measurements.
Acknowledgments
We thank Dipl.-Ing. J. Kösters for the intensity data collections.
-
Research ethics: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Hoffmann, R., Zheng, C. J. Phys. Chem. 1985, 89, 4175–4181; https://doi.org/10.1021/j100266a007.Suche in Google Scholar
2. Just, G., Paufler, P. J. Alloys Compd. 1996, 232, 1–25; https://doi.org/10.1016/0925-8388(95)01939-1.Suche in Google Scholar
3. Shatruk, M. J. Solid State Chem. 2019, 272, 198–209; https://doi.org/10.1016/j.jssc.2019.02.012.Suche in Google Scholar
4. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Suche in Google Scholar
5. Andress, K. R., Alberti, E. Z. Metallkd. 1935, 27, 126–128.10.1163/187124035X00090Suche in Google Scholar
6. Ban, Z., Sikirica, M. Acta Crystallogr. 1965, 18, 594–599; https://doi.org/10.1107/s0365110x6500141x.Suche in Google Scholar
7. Lai, Y., Chan, J. Y., Baumbach, R. E. Sci. Adv. 2022, 8, eabp8264; https://doi.org/10.1126/sciadv.abp8264.Suche in Google Scholar PubMed PubMed Central
8. Parthé, E., Chabot, B., Braun, H. F., Engel, N. Acta Crystallogr. 1983, B39, 588–595.10.1107/S010876818300302XSuche in Google Scholar
9. Kußmann, D., Pöttgen, R., Rodewald, U. Ch., Rosenhahn, C., Mosel, B. D., Kotzyba, G., Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Suche in Google Scholar
10. Johnston, D. C. Adv. Phys. 2010, 59, 803–1061; https://doi.org/10.1080/00018732.2010.513480.Suche in Google Scholar
11. Johrendt, D., Hosono, H., Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2011, 226, 435–446; https://doi.org/10.1524/zkri.2011.1363.Suche in Google Scholar
12. Kneidinger, F., Salamakha, L., Bauer, E., Zeiringer, I., Rogl, P., Blaas-Schenner, C., Reith, D., Podloucky, R. Phys. Rev. B 2014, 90, 024504; https://doi.org/10.1103/physrevb.90.024504.Suche in Google Scholar
13. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Suche in Google Scholar
14. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262.10.1515/znb-2021-0022Suche in Google Scholar
15. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Suche in Google Scholar
16. Rühl, R., Jeitschko, W. Mater. Res. Bull. 1979, 14, 513–517; https://doi.org/10.1016/0025-5408(79)90194-6.Suche in Google Scholar
17. Peng, W., Chanakian, S., Zevalkink, A. Inorg. Chem. Front. 2018, 5, 1744–1759; https://doi.org/10.1039/c7qi00813a.Suche in Google Scholar
18. Stoyko, S. S., Blanchard, P. E. R., Ramachandran, K. K., Mar, A. J. Solid State Chem. 2019, 269, 100–106; https://doi.org/10.1016/j.jssc.2018.09.021.Suche in Google Scholar
19. Yarmolyuk, Y. P., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1976, 21, 473–475.Suche in Google Scholar
20. Gladyshevskii, E. I., Kotur, B. Y., Bodak, O. I., Skvorchuk, V. P. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1977, 751–754.Suche in Google Scholar
21. Kotur, B. Y., Dobryanskaya, D. O., Shcherba, I. D. Tezizy Dokl. Vses. Konf. Kristallokhim. Intermet. Soeden., 5th, 1989; p. 161.Suche in Google Scholar
22. Shcherba, I. D., Kotur, B. Y. Sov. Phys. Crystallogr. 1990, 35, 136–138.Suche in Google Scholar
23. Kotur, B. Y., Cerny, R., Pacheco, J. V., Yvon K. Z. Kristallogr. NCS 1997, 212, 289; https://doi.org/10.1524/ncrs.1997.212.1.289.Suche in Google Scholar
24. Felner, I., Mayer, I., Grill, A., Schieber, M. Solid State Commun. 1975, 16, 1005–1009; https://doi.org/10.1016/0038-1098(75)90640-7.Suche in Google Scholar
25. Umarji, A. M., Noakes, D. R., Viccaro, P. J., Shenoy, G. K., Aldred, A. T., Niarchos, D. J. Magn. Magn. Mater. 1983, 36, 61–65; https://doi.org/10.1016/0304-8853(83)91044-2.Suche in Google Scholar
26. Shcherba, I., Sacharevych, M., Savyckyj, N., Antonov, V., Jatcyk, B. J. Mater. Sci. Eng. B 2015, 5, 42–49.Suche in Google Scholar
27. Shcherba, I. D., Antonov, V. N., Zhak, O. V., Bekenov, L. V., Kovalska, M. V., Noga, H., Uskokovic, D., Yatcyk, B. M. J. Phys. Stud. 2019, 23, 2301; https://doi.org/10.30970/jps.23.2301.Suche in Google Scholar
28. Skolozdra, R. V., Stadnyk, Yu. V., Gorelenko, Yu. K., Yarmolyuk, Ya. P., Kruglyashov, S. B. Fiz. Met. Metalloved. 1983, 55, 479–483.Suche in Google Scholar
29. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Suche in Google Scholar
30. Hoffmann, R.-D., Rodewald, U. Ch., Haverkamp, S., Benndorf, C., Eckert, H., Heying, B., Pöttgen, R. Solid State Sci. 2017, 72, 109–115; https://doi.org/10.1016/j.solidstatesciences.2017.07.017.Suche in Google Scholar
31. Harmening, T., Al Alam, A., Matar, S. F., Eckert, H., Pöttgen, R. Solid State Sci. 2009, 11, 1239–1245; https://doi.org/10.1016/j.solidstatesciences.2009.03.015.Suche in Google Scholar
32. Harmening, T., Mohr, D., Eckert, H., Al Alam, A., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 1839–1850; https://doi.org/10.1002/zaac.200900529.Suche in Google Scholar
33. Kotur, B. Y. Visn. Lviv. Derzh. Univ., Ser. Khim. 1984, 25, 20–21.Suche in Google Scholar
34. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar
35. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
36. Palatinus, L. Acta Crystallogr. 2013, 69B, 1–16.10.1107/S0108768112051361Suche in Google Scholar PubMed
37. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
38. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
39. ORIGINPRO 2016G (version 9.3.2.303), OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Suche in Google Scholar
40. CORELDRAW Graphics Suite 2017 (version 19.0.0.328), Corel Corporation: Ottawa, Ontario (Canada), 2017.Suche in Google Scholar
41. Koppe, J., Bußkamp, M., Hansen, M. R. J. Phys. Chem. A 2021, 125, 5643–5649; https://doi.org/10.1021/acs.jpca.1c02958.Suche in Google Scholar PubMed
42. O’Dell, L. A., Schurko, R. W. Chem. Phys. Lett. 2008, 464, 97–102; https://doi.org/10.1016/j.cplett.2008.08.095.Suche in Google Scholar
43. O’Dell, L. A., Rossini, A. J., Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330–335; https://doi.org/10.1016/j.cplett.2008.12.044.Suche in Google Scholar
44. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. K. H., Marks, L. D. J. Chem. Phys. 2020, 152, 074101; https://doi.org/10.1063/1.5143061.Suche in Google Scholar PubMed
45. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar
46. Zhao, J. T., Parthé, E. Acta Crystallogr. 1991, C47, 1781–1784.10.1107/S0108270191003037Suche in Google Scholar
47. Flandorfer, H., Kaczorowski, D., Gröbner, J., Rogl, P., Wouters, R., Godart, C., Kostikas, A. J. Solid State Chem. 1998, 137, 191–205; https://doi.org/10.1006/jssc.1997.7660.Suche in Google Scholar
48. Cordier, G., Woll, P., Schäfer, H. J. Less-Common Met. 1982, 86, 129–136; https://doi.org/10.1016/0022-5088(82)90197-7.Suche in Google Scholar
49. Xia, S.-Q., Bobev, S. J. Solid State Chem. 2006, 179, 3371–3377; https://doi.org/10.1016/j.jssc.2006.07.003.Suche in Google Scholar
50. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
51. Harmening, T., Eckert, H., Fehse, C. M., Sebastian, C. P., Pöttgen, R. J. Solid State Chem. 2011, 184, 3303–3309; https://doi.org/10.1016/j.jssc.2011.10.025.Suche in Google Scholar
52. Cenzual, K., Gladyshevskii, R. E., Parthé, E. Acta Crystallogr. C 1992, 48, 225–228; https://doi.org/10.1107/s010827019100968x.Suche in Google Scholar
53. Kawai, T., Muranaka, H., Measson, M.-A., Shimoda, T., Doi, Y., Matsuda, T. D., Haga, Y., Knebel, G., Lapertot, G., Aoki, D., Flouquet, J., Takeuchi, T., Settai, R., Ōnuki, Y. J. Phys. Soc. Jpn. 2008, 77, 064716; https://doi.org/10.1143/jpsj.77.064716.Suche in Google Scholar
54. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
55. Prakash, J., Mesbah, A., Beard, J. C., Malliakas, C. D., Ibers, J. A. J. Solid State Chem. 2016, 233, 90–94; https://doi.org/10.1016/j.jssc.2015.10.003.Suche in Google Scholar
56. Haeberlen, U. In: Advances in Magnetic Resonance, Suppl. 1; Waugh, J. S., Ed. Academic Press: New York, 1976.Suche in Google Scholar
57. Mehring, M. Principles of High Resolution NMR in Solids, 2nd ed.; Springer Verlag: Berlin, 1983.10.1007/978-3-642-68756-3Suche in Google Scholar
58. Spiess, H. W. In: NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds. Springer Verlag, Berlin, Vol. 15, 1978.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
- The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
- Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions
- High-pressure/high-temperature synthesis of the first walstromite-analogue borate Tm2CrB3O9
- Organic and Metalorganic Crystal Structures (Original Paper)
- A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis
- Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
- A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Ytterbium valence ordering in the low-temperature superstructure of Yb2Pd2Cd
- The HfFe2Si2 type silicides ScT2Si2 (T = Ru, Rh, Os) – structure and solid-state 29Si/45Sc NMR spectroscopy
- Finding the ‘Goldilocks Zone’: cationic size and tilting of carbodiimide and cyanamide anions
- High-pressure/high-temperature synthesis of the first walstromite-analogue borate Tm2CrB3O9
- Organic and Metalorganic Crystal Structures (Original Paper)
- A doubly mononuclear cobalt(II) complex constructed with azide anions and a new coordination mode of the 2-(2-pyridylmethylamino) ethanesulfonic acid ligands: structure, conformation comparison and Hirshfeld surface analysis
- Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids
- A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates