Startseite (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

(Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions

  • Michael Johnscher , Birgit Gerke , Jutta Kösters , Theresa Block , Oliver Niehaus , Maximilian Kai Reimann und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 26. Juli 2023

Abstract

The intermetallic compounds (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 were synthesized from the elements in sealed niobium ampoules in an induction furnace. The polycrystalline samples were characterized through their Guinier powder patterns. The structures were refined from single crystal X-ray diffractometer data: YNi2Al3 type, P6/mmm, a = 984.61(5), c = 455.33(3) pm, wR2 = 0.0216, 376 F2 values, 21 variables for (Ca0.95Cd0.10)Pd2Cd3, a = 998.55(8), c = 453.65(3) pm, wR2 = 0.0296, 341 F2 values, 17 variables for SrPd2Cd3 and a = 992.57(4), c = 457.34(2) pm, wR2 = 0.0300, 384 F2 values, 21 variables for (Eu0.95Cd0.10)Pd2Cd3. The striking crystal chemical motif in the three structures is a planar [PdCd2] Kagome-type layer. The two crystallographically independent Ca (Sr, Eu) atoms have a coordination number of 18 by 6 Pd and 12 Cd atoms. The calcium and europium compound show a small degree of Ca (Eu) substitution by Cd2 dumb-bells with 281 pm Cd–Cd in (Eu0.95Cd0.10)Pd2Cd3. Temperature dependent magnetic susceptibility measurements show Curie–Weiss behaviour (7.63(1) µB/Eu atom) for the europium compound and the onset of ferromagnetic ordering at TC = 14.9(2) K. The divalent character of europium is corroborated by 151Eu Mössbauer spectroscpy.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgment

We thank Dipl.-Ing. U. Ch. Rodewald for collecting the single crystal data.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nowotny, H. Z. Metallkd. 1942, 34, 247.10.1515/ijmr-1942-341004Suche in Google Scholar

2. Rykhal’, R. M., Zarechnyuk, O. S., Kuten, J. I. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1978, 1136.Suche in Google Scholar

3. Kuz’ma, Y. B., Krypyakevich, P. I., Bilonizhko, N. S. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1969, 939.Suche in Google Scholar

4. Villars, P., Cenzual, K. Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2022/23; ASM International: Materials Park, Ohio, USA, 2022.Suche in Google Scholar

5. Schlapbach, L., Züttel, A. Nature 2001, 414, 353; https://doi.org/10.1038/35104634.Suche in Google Scholar PubMed

6. Johnston, R. L., Hoffmann, R. Polyhedron 1990, 9, 1901; https://doi.org/10.1016/s0277-5387(00)84002-4.Suche in Google Scholar

7. Pati, S. K., Rao, C. N. R. Chem. Commun. 2008, 4683; https://doi.org/10.1039/b807207h.Suche in Google Scholar PubMed

8. Lacroix, C., Mendels, P., Mila, F. Introduction to Frustrated Magnetism – Materials, Experiment; Theory, Springer: Heidelberg, 2011.10.1007/978-3-642-10589-0Suche in Google Scholar

9. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Suche in Google Scholar

10. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139.Suche in Google Scholar

11. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar

12. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Volume A1, Symmetry Relations Between Space Groups; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, 2010; pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar

13. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen–Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg + Teubner Verlag: Wiesbaden, 2011.Suche in Google Scholar

14. Senchuk, O., Demchenko, G., Demchenko, P. Y., Gladyshevskii, R. E. Visn. Lviv Derzh. Univ., Ser. Khim. 2013, 54, 77.Suche in Google Scholar

15. Morozkin, A. V., Knotko, A. V., Yapaskurt, V. O., Yuan, F., Mozharivskyj, Y., Nirmala, R. J. Solid State Chem. 2013, 208, 9; https://doi.org/10.1016/j.jssc.2013.09.036.Suche in Google Scholar

16. Eustermann, F., Hoffmann, R.-D., Janka, O. Z. Kristallogr. 2017, 232, 573; https://doi.org/10.1515/zkri-2016-2023.Suche in Google Scholar

17. Zarechnyuk, O. S., Rykhal’, R. M. Visn. Lviv Derzh. Univ., Ser. Khim. 1981, 23.Suche in Google Scholar

18. Gerke, B., Niehaus, O., Block, T., Reimann, M. K., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648, e202200235.10.1002/zaac.202200235Suche in Google Scholar

19. Hermes, W., Linsinger, S., Mishra, R., Pöttgen, R. Monatsh. Chem. 2008, 139, 1143; https://doi.org/10.1007/s00706-008-0914-4.Suche in Google Scholar

20. Gerke, B., Block, T., Pöttgen, R. Z. Naturforsch. 2022, 77b, 543; https://doi.org/10.1515/znb-2022-0046.Suche in Google Scholar

21. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5.10.1515/revic.2011.007Suche in Google Scholar

22. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133.Suche in Google Scholar

23. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar

24. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

25. Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

26. Sheldrick, G. M. Acta Crystallogr. C 2015, 71, 3; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

27. Wendorff, M., Röhr, C. Z. Naturforsch. 2007, 62b, 1549.10.1515/znb-2007-1213Suche in Google Scholar

28. Diamond, version 4.5, crystal impact: Bonn, Germany, 2018. http://www.crystalimpact.com.Suche in Google Scholar

29. Corel Corporation. CorelDraw graphics suite 2017 (version 19.0.0.328), 2017.Suche in Google Scholar

30. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Suche in Google Scholar

31. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42.Suche in Google Scholar

32. Brand, R. A. WinNormos for Igor6 (version for Igor6.2 or above: 22.02.2017); Universität Duisburg: Duisburg, Germany, 2017.Suche in Google Scholar

33. Opainich, I. M., Pavlyuk, V. V., Bodak, O. I. Inorg. Mater. 1996, 32, 625.Suche in Google Scholar

34. Pavlyuk, V., Różycka-Sokołowska, E., Marciniak, B., Prochwicz, W., Solokha, P., Dzierżanowski, P. J. Alloys Compd. 2004, 373, 137; https://doi.org/10.1016/j.jallcom.2003.10.028.Suche in Google Scholar

35. Pavlyuk, V., Prochwicz, W., Solokha, P., Zelinska, O., Marciniak, B., Różycka-Sokołowska, E. J. Alloys Compd. 2006, 407, 226; https://doi.org/10.1016/j.jallcom.2005.06.057.Suche in Google Scholar

36. Stojanovic, M., Latturner, S. E. J. Solid State Chem. 2007, 180, 907; https://doi.org/10.1016/j.jssc.2006.12.022.Suche in Google Scholar

37. Stojanovic, M., Latturner, S. E. J. Solid State Chem. 2009, 182, 2239; https://doi.org/10.1016/j.jssc.2009.06.001.Suche in Google Scholar

38. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

39. Doğan, A., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2007, 633, 219; https://doi.org/10.1002/zaac.200600266.Suche in Google Scholar

40. Fickenscher, T., Hoffmann, R.-D., Mishra, R., Pöttgen, R. Z. Naturforsch. 2002, 57b, 275; https://doi.org/10.1515/znb-2002-0303.Suche in Google Scholar

41. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707; https://doi.org/10.1002/zaac.201200538.Suche in Google Scholar

42. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

43. Buschow, K. H. J., van der Goot, A. S. Acta Crystallogr. 1971, 27B, 1085; https://doi.org/10.1107/s0567740871003558.Suche in Google Scholar

44. Tappe, F., Schwickert, C., Pöttgen, R. Z. Anorg. Allg. Chem. 2012, 638, 1711; https://doi.org/10.1002/zaac.201200022.Suche in Google Scholar

45. Florio, J. V., Baenziger, N. C., Rundle, R. E. Acta Crystallogr. 1956, 9, 367; https://doi.org/10.1107/s0365110x5600108x.Suche in Google Scholar

46. Kuroda, F., Fukazawa, T., Miyake, T. Phys. Rev. Mater. 2021, 5, 124405; https://doi.org/10.1103/physrevmaterials.5.124405.Suche in Google Scholar

47. Wilson, C. G., Thomas, D. K., Spooner, F. J. Acta Crystallogr. 1960, 13, 56; https://doi.org/10.1107/s0365110x60000121.Suche in Google Scholar

48. Cenzual, K., Gelato, L. M., Penzo, M., Parthé, E. Acta Crystallogr. 1991, 47B, 433; https://doi.org/10.1107/s0108768191000903.Suche in Google Scholar

49. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. Typix–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

50. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar

51. Ryan, D. H., Cranswick, L. M. D. J. Appl. Crystallogr. 2008, 41, 198; https://doi.org/10.1107/s0021889807065806.Suche in Google Scholar

52. Ryan, D. H., Legros, A., Niehaus, O., Pöttgen, R., Cadogan, J. M., Flacau, R. J. Appl. Phys. 2015, 117, 17D108.10.1063/1.4907239Suche in Google Scholar

53. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174; https://doi.org/10.1006/jssc.1998.7750.Suche in Google Scholar

54. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133; https://doi.org/10.1039/b100055l.Suche in Google Scholar

55. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds. De Gruyter: Berlin, 2020.10.1515/9783110654929Suche in Google Scholar

Received: 2023-06-15
Accepted: 2023-07-13
Published Online: 2023-07-26
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0025/html
Button zum nach oben scrollen