(Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
-
Michael Johnscher
Abstract
The intermetallic compounds (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 were synthesized from the elements in sealed niobium ampoules in an induction furnace. The polycrystalline samples were characterized through their Guinier powder patterns. The structures were refined from single crystal X-ray diffractometer data: YNi2Al3 type, P6/mmm, a = 984.61(5), c = 455.33(3) pm, wR2 = 0.0216, 376 F2 values, 21 variables for (Ca0.95Cd0.10)Pd2Cd3, a = 998.55(8), c = 453.65(3) pm, wR2 = 0.0296, 341 F2 values, 17 variables for SrPd2Cd3 and a = 992.57(4), c = 457.34(2) pm, wR2 = 0.0300, 384 F2 values, 21 variables for (Eu0.95Cd0.10)Pd2Cd3. The striking crystal chemical motif in the three structures is a planar [PdCd2] Kagome-type layer. The two crystallographically independent Ca (Sr, Eu) atoms have a coordination number of 18 by 6 Pd and 12 Cd atoms. The calcium and europium compound show a small degree of Ca (Eu) substitution by Cd2 dumb-bells with 281 pm Cd–Cd in (Eu0.95Cd0.10)Pd2Cd3. Temperature dependent magnetic susceptibility measurements show Curie–Weiss behaviour (7.63(1) µB/Eu atom) for the europium compound and the onset of ferromagnetic ordering at TC = 14.9(2) K. The divalent character of europium is corroborated by 151Eu Mössbauer spectroscpy.
Acknowledgment
We thank Dipl.-Ing. U. Ch. Rodewald for collecting the single crystal data.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Nowotny, H. Z. Metallkd. 1942, 34, 247.10.1515/ijmr-1942-341004Suche in Google Scholar
2. Rykhal’, R. M., Zarechnyuk, O. S., Kuten, J. I. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1978, 1136.Suche in Google Scholar
3. Kuz’ma, Y. B., Krypyakevich, P. I., Bilonizhko, N. S. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1969, 939.Suche in Google Scholar
4. Villars, P., Cenzual, K. Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2022/23; ASM International: Materials Park, Ohio, USA, 2022.Suche in Google Scholar
5. Schlapbach, L., Züttel, A. Nature 2001, 414, 353; https://doi.org/10.1038/35104634.Suche in Google Scholar PubMed
6. Johnston, R. L., Hoffmann, R. Polyhedron 1990, 9, 1901; https://doi.org/10.1016/s0277-5387(00)84002-4.Suche in Google Scholar
7. Pati, S. K., Rao, C. N. R. Chem. Commun. 2008, 4683; https://doi.org/10.1039/b807207h.Suche in Google Scholar PubMed
8. Lacroix, C., Mendels, P., Mila, F. Introduction to Frustrated Magnetism – Materials, Experiment; Theory, Springer: Heidelberg, 2011.10.1007/978-3-642-10589-0Suche in Google Scholar
9. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Suche in Google Scholar
10. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139.Suche in Google Scholar
11. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar
12. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Volume A1, Symmetry Relations Between Space Groups; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, 2010; pp. 44–56.10.1107/97809553602060000795Suche in Google Scholar
13. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen–Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg + Teubner Verlag: Wiesbaden, 2011.Suche in Google Scholar
14. Senchuk, O., Demchenko, G., Demchenko, P. Y., Gladyshevskii, R. E. Visn. Lviv Derzh. Univ., Ser. Khim. 2013, 54, 77.Suche in Google Scholar
15. Morozkin, A. V., Knotko, A. V., Yapaskurt, V. O., Yuan, F., Mozharivskyj, Y., Nirmala, R. J. Solid State Chem. 2013, 208, 9; https://doi.org/10.1016/j.jssc.2013.09.036.Suche in Google Scholar
16. Eustermann, F., Hoffmann, R.-D., Janka, O. Z. Kristallogr. 2017, 232, 573; https://doi.org/10.1515/zkri-2016-2023.Suche in Google Scholar
17. Zarechnyuk, O. S., Rykhal’, R. M. Visn. Lviv Derzh. Univ., Ser. Khim. 1981, 23.Suche in Google Scholar
18. Gerke, B., Niehaus, O., Block, T., Reimann, M. K., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648, e202200235.10.1002/zaac.202200235Suche in Google Scholar
19. Hermes, W., Linsinger, S., Mishra, R., Pöttgen, R. Monatsh. Chem. 2008, 139, 1143; https://doi.org/10.1007/s00706-008-0914-4.Suche in Google Scholar
20. Gerke, B., Block, T., Pöttgen, R. Z. Naturforsch. 2022, 77b, 543; https://doi.org/10.1515/znb-2022-0046.Suche in Google Scholar
21. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5.10.1515/revic.2011.007Suche in Google Scholar
22. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133.Suche in Google Scholar
23. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar
24. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
25. Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar
26. Sheldrick, G. M. Acta Crystallogr. C 2015, 71, 3; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar
27. Wendorff, M., Röhr, C. Z. Naturforsch. 2007, 62b, 1549.10.1515/znb-2007-1213Suche in Google Scholar
28. Diamond, version 4.5, crystal impact: Bonn, Germany, 2018. http://www.crystalimpact.com.Suche in Google Scholar
29. Corel Corporation. CorelDraw graphics suite 2017 (version 19.0.0.328), 2017.Suche in Google Scholar
30. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Suche in Google Scholar
31. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42.Suche in Google Scholar
32. Brand, R. A. WinNormos for Igor6 (version for Igor6.2 or above: 22.02.2017); Universität Duisburg: Duisburg, Germany, 2017.Suche in Google Scholar
33. Opainich, I. M., Pavlyuk, V. V., Bodak, O. I. Inorg. Mater. 1996, 32, 625.Suche in Google Scholar
34. Pavlyuk, V., Różycka-Sokołowska, E., Marciniak, B., Prochwicz, W., Solokha, P., Dzierżanowski, P. J. Alloys Compd. 2004, 373, 137; https://doi.org/10.1016/j.jallcom.2003.10.028.Suche in Google Scholar
35. Pavlyuk, V., Prochwicz, W., Solokha, P., Zelinska, O., Marciniak, B., Różycka-Sokołowska, E. J. Alloys Compd. 2006, 407, 226; https://doi.org/10.1016/j.jallcom.2005.06.057.Suche in Google Scholar
36. Stojanovic, M., Latturner, S. E. J. Solid State Chem. 2007, 180, 907; https://doi.org/10.1016/j.jssc.2006.12.022.Suche in Google Scholar
37. Stojanovic, M., Latturner, S. E. J. Solid State Chem. 2009, 182, 2239; https://doi.org/10.1016/j.jssc.2009.06.001.Suche in Google Scholar
38. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
39. Doğan, A., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2007, 633, 219; https://doi.org/10.1002/zaac.200600266.Suche in Google Scholar
40. Fickenscher, T., Hoffmann, R.-D., Mishra, R., Pöttgen, R. Z. Naturforsch. 2002, 57b, 275; https://doi.org/10.1515/znb-2002-0303.Suche in Google Scholar
41. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707; https://doi.org/10.1002/zaac.201200538.Suche in Google Scholar
42. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
43. Buschow, K. H. J., van der Goot, A. S. Acta Crystallogr. 1971, 27B, 1085; https://doi.org/10.1107/s0567740871003558.Suche in Google Scholar
44. Tappe, F., Schwickert, C., Pöttgen, R. Z. Anorg. Allg. Chem. 2012, 638, 1711; https://doi.org/10.1002/zaac.201200022.Suche in Google Scholar
45. Florio, J. V., Baenziger, N. C., Rundle, R. E. Acta Crystallogr. 1956, 9, 367; https://doi.org/10.1107/s0365110x5600108x.Suche in Google Scholar
46. Kuroda, F., Fukazawa, T., Miyake, T. Phys. Rev. Mater. 2021, 5, 124405; https://doi.org/10.1103/physrevmaterials.5.124405.Suche in Google Scholar
47. Wilson, C. G., Thomas, D. K., Spooner, F. J. Acta Crystallogr. 1960, 13, 56; https://doi.org/10.1107/s0365110x60000121.Suche in Google Scholar
48. Cenzual, K., Gelato, L. M., Penzo, M., Parthé, E. Acta Crystallogr. 1991, 47B, 433; https://doi.org/10.1107/s0108768191000903.Suche in Google Scholar
49. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. Typix–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar
50. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
51. Ryan, D. H., Cranswick, L. M. D. J. Appl. Crystallogr. 2008, 41, 198; https://doi.org/10.1107/s0021889807065806.Suche in Google Scholar
52. Ryan, D. H., Legros, A., Niehaus, O., Pöttgen, R., Cadogan, J. M., Flacau, R. J. Appl. Phys. 2015, 117, 17D108.10.1063/1.4907239Suche in Google Scholar
53. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174; https://doi.org/10.1006/jssc.1998.7750.Suche in Google Scholar
54. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133; https://doi.org/10.1039/b100055l.Suche in Google Scholar
55. Eckert, H., Pöttgen, R. Solid state NMR and Mössbauer spectroscopy. In Rare Earth Chemistry; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds. De Gruyter: Berlin, 2020.10.1515/9783110654929Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers
- Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
- (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
- Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
- A new layered potassium-based molybdenum–tungsten monophosphate: synthesis, crystal structure, XPS and magnetic studies
- Effect of different boron sources on the copper borates in solid-state synthesis
- Uranyl silicate nanotubules in Rb2[(UO2)2O(Si3O8)]: synthesis and crystal structure
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers
- Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
- (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
- Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
- A new layered potassium-based molybdenum–tungsten monophosphate: synthesis, crystal structure, XPS and magnetic studies
- Effect of different boron sources on the copper borates in solid-state synthesis
- Uranyl silicate nanotubules in Rb2[(UO2)2O(Si3O8)]: synthesis and crystal structure