Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
-
Sergey Yu. Stefanovich
, Bogdan I. Lazoryak , Alexander M. Antipin , Anatoliy S. Volkov , Andrei I. Evdokimov , Olga A. Gurbanova , Olga V. Dimitrova und Dina V. Deyneko
Abstract
Large-scale single crystals of Ca9Mg(PO4)6(PO3OH), Ca9Zn(PO4)6(PO3OH), and Ca9Co(PO4)6(PO3OH) were synthesized using hydrothermal technique, and turned out to be similar to natural bone whitlockite. The hexagonal single crystals about 1 mm with high-quality were obtained with this method for the first time. The crystals were of sufficiently good quality for the precision X-ray structural investigation. The compounds crystallize in usual for this structural type trigonal space group R3c. Presence of hydrogen atom in the structure was confirmed by means of infra-red (IR) spectroscopy, differential scanning calorimetry (DSC) and differential thermogravimetry (DTG) methods. Based on the analysis of the local bond valence sum (BVS), a conclusion on the localization of H atoms was made. The formation of O–H groups and hydrogen bonds H⋯O in vicinity of PO4 tetrahedra was shown and similar to bone whitlockite. This research provides new data on possibility of using hydrothermal technique for obtaining doped bone whitlockites. Hydrogen-containing doped whitlockites can combine bioactive properties and improve biocompatibility due to similarity to natural bond. New structural data are useful for finding the ways to better biocompatibility of whitlockite-based materials.
Funding source: Russian Science Foundation
Award Identifier / Grant number: 23-33-00270
Funding source: Scholarship of the President of Russia Federation
Award Identifier / Grant number: СП-859.2021.1
Funding source: Development Program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University’s
Funding source: Chemistry Department of Moscow State University
Award Identifier / Grant number: АААА-А21-121011590086-0
Funding source: Russian Federation
Award Identifier / Grant number: 122011300125-2
Acknowledgment
A.S.V. is grateful to the Institute of Geology and Geochemistry of Ural Branch of RAS for the possibility of taking measurements on FT-IR spectrometer. IR spectroscopy measurements were performed in Common Use Center of the Ural Branch of RAS “Geoanalyst”. The single crystals X-ray diffraction study was performed within the State Assignment of FSRC “Crystallography and Photonics” RAS in part of X-ray diffraction studies. The single crystals X-ray diffraction study was performed using the equipment of the Shared Research Center FSRC.
-
Author contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
-
Research funding: The study was supported by Russian Science Foundation (Project No. 23-23-00270). D.V.D. is grateful to the Scholarship of the President of Russia Federation (СП-859.2021.1). The study was supported by the Development Program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University’s “The future of the planet and global environmental change” and the state assignment of the Chemistry Department of Moscow State University (Agreement No. АААА-А21-121011590086-0). The X-ray study was carried out in accordance with the state of the Russian Federation, state registration number 122011300125-2.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Abbreviations
- WH
-
whitlockite
- HAp
-
hydroxyapatite
- DSC
-
differential scanning calorimetry
- DTG
-
differential thermogravimetry
- BVS
-
Bond-valence sum calculations
- PXRD
-
powder X-ray diffraction
- IR
-
infra-red
References
1. Calvo, C., Gopal, R. The crystal structure of whitlockite from the Palermo Quarry. Am. Mineral. 1975, 60, 120–133.Suche in Google Scholar
2. Frondel, C. Whitlockite: a new calcium phosphate, Ca3(PO4)2. Am. Mineral. 1941, 26, 145–152.Suche in Google Scholar
3. Dickens, B., Schroeder, L. W., Brown, W. E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 1974, 10, 232–248; https://doi.org/10.1016/0022-4596(74)90030-9.Suche in Google Scholar
4. Gopal, R., Calvo, C. Crystal structure of Ca3(AsO4)2. Can. J. Chem. 1971, 49, 1036–1046; https://doi.org/10.1139/v71-173.Suche in Google Scholar
5. Gopal, R., Calvo, C. The structure of Ca3(VO4)2. Z. Kristallogr. 1973, 137, 67–85; https://doi.org/10.1524/zkri.1973.137.16.67.Suche in Google Scholar
6. Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I., Van Tendeloo, G. Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; crystal structure of the paraelectric phase at 923 K. Solid State Sci. 2004, 6, 185–195; https://doi.org/10.1016/j.solidstatesciences.2003.12.007.Suche in Google Scholar
7. Belik, A. A., Morozov, V. A., Deyneko, D. V., Savon, A. E., Baryshnikova, O. V., Zhukovskaya, E. S., Dorbakov, N. G., Katsuya, Y., Tanaka, M., Stefanovich, S. Y., Hadermann, J., Lazoryak, B. I. Antiferroelectric properties and site occupations of R3+ cations in Ca8MgR(PO4)7 luminescent host materials. J. Alloys Compd. 2017, 699, 928–937; https://doi.org/10.1016/j.jallcom.2016.12.288.Suche in Google Scholar
8. Dorbakov, N. G., Baryshnikova, O. V., Morozov, V. A., Belik, A. A., Katsuya, Y., Tanaka, M., Stefanovich, S. Y., Lazoryak, B. I., Lazoryak, B. I. Tuning of nonlinear optical and ferroelectric properties via the cationic composition of Ca9.5−1.5xBixCd(VO4)7 solid solutions. Mater. Des. 2017, 116, 515–523; https://doi.org/10.1016/j.matdes.2016.11.107.Suche in Google Scholar
9. Dikhtyar, Y. Y., Deyneko, D. V., Spassky, D. A., Lazoryak, B. I., Stefanovich, S. Y. A novel high color purity blue-emitting Tm3+-doped β-Ca3(PO4)2-type phosphor for WLED application. Optik (Stuttg.) 2021, 227, 166027; https://doi.org/10.1016/j.ijleo.2020.166027.Suche in Google Scholar
10. Wu, X., Huang, Y., Shi, L., Seo, H. J. Spectroscopy characteristics of vanadate Ca9Dy(VO4)7 for application of white-light-emitting diodes. Mater. Chem. Phys. 2009, 116, 449–452; https://doi.org/10.1016/j.matchemphys.2009.04.002.Suche in Google Scholar
11. Kim, H. D., Jang, H. L., Ahn, H.-Y., Lee, H. K., Park, J., Lee, E., Lee, E. A., Jeong, Y.-H., Kim, D.-G., Nam, K. T., Hwang, N. S. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2017, 112, 31–43; https://doi.org/10.1016/j.biomaterials.2016.10.009.Suche in Google Scholar PubMed
12. Deyneko, D. V., Fadeeva, I. V., Borovikova, E. Y., Dzhevakov, P. B., Slukin, P. V., Zheng, Y., Xia, D., Lazoryak, B. I., Rau, J. V. Antimicrobial properties of co-doped tricalcium phosphates Ca3−2x(M′M″)x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+). Ceram. Int. 2022, 48, 29770–29781; https://doi.org/10.1016/j.ceramint.2022.06.237.Suche in Google Scholar
13. Jang, H. L., Zheng, G. B., Park, J., Kim, H. D., Baek, H.-R., Lee, H. K., Lee, K., Han, H. N., Lee, C.-K., Hwang, N. S., Lee, J. H., Nam, K. T. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv. Healthc. Mater. 2016, 5, 128–136; https://doi.org/10.1002/adhm.201400824.Suche in Google Scholar PubMed
14. Jarcho, M., Salsbury, R. L., Thomas, M. B., Doremus, R. H. Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J. Mater. Sci. 1979, 14, 142–150; https://doi.org/10.1007/BF01028337.Suche in Google Scholar
15. Jang, H. L., Jin, K., Lee, J., Kim, Y., Nahm, S. H., Hong, K. S., Nam, K. T. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 2014, 8, 634–641; https://doi.org/10.1021/nn405246h.Suche in Google Scholar PubMed
16. Kizalaite, A., Grigoraviciute-Puroniene, I., Asuigui, D. R. C., Stoll, S. L., Cho, S. H., Sekino, T., Kareiva, A., Zarkov, A. Dissolution-precipitation synthesis and characterization of zinc whitlockite with variable metal content. ACS Biomater. Sci. Eng. 2021, 7, 3586–3593; https://doi.org/10.1021/acsbiomaterials.1c00335.Suche in Google Scholar PubMed PubMed Central
17. Tao, J., Jiang, W., Zhai, H., Pan, H., Xu, X., Tang, R. Structural components and anisotropic dissolution behaviors in one hexagonal single crystal of β-tricalcium phosphate. Cryst. Growth Des. 2008, 8, 2227–2234; https://doi.org/10.1021/cg700808h.Suche in Google Scholar
18. Deyneko, D. V., Aksenov, S. M., Morozov, V. A., Stefanovich, S. Y., Dimitrova, O. V., Barishnikova, O. V., Lazoryak, B. I. A new hydrogen-containing whitlockitetype phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure. Z. Kristallogr. 2014, 229, 823–830; https://doi.org/10.1515/zkri-2014-1774.Suche in Google Scholar
19. Kostiner, E., Rea, J. R. The crystal structure of manganese-whitlockite, Ca18Mn2H2(PO4)14. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1976, 32, 250–253; https://doi.org/10.1107/S0567740876002690.Suche in Google Scholar
20. Toyama, T., Nakashima, K., Yasue, T. Hydrothermal synthesis of β-tricalcium phosphate from amorphous calcium phosphate. J. Ceram. Soc. Jpn. 2002, 110, 716–721; https://doi.org/10.2109/jcersj.110.716.Suche in Google Scholar
21. Batool, S., Liaqat, U., Hussain, Z., Sohail, M. Synthesis, characterization and process optimization of bone whitlockite. Nanomaterials 2020, 10, 1–14; https://doi.org/10.3390/nano10091856.Suche in Google Scholar PubMed PubMed Central
22. Tas, A. C. Transformation of brushite (CaHPO4·2H2O) to whitlockite (Ca9Mg(HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J. Am. Ceram. Soc. 2016, 99, 1200–1206; https://doi.org/10.1111/jace.14069.Suche in Google Scholar
23. Konishi, T., Watanabe, S. Copper whitlockite synthesized via hydrothermal transformation of calcium hydrogen phosphate dihydrate. Phosphorus Res. Bull. 2022, 38, 18–24; https://doi.org/10.3363/prb.38.18.Suche in Google Scholar
24. Kizalaite, A., Klimavicius, V., Versockiene, J., Lastauskiene, E., Murauskas, T., Skaudzius, R., Yokoi, T., Kawashita, M., Goto, T., Sekino, T., Zarkov, A. Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca18Zn2(HPO4)2(PO4)12) synthesized via a phase transformation process under hydrothermal conditions. CrystEngComm 2022, 24, 5068–5079; https://doi.org/10.1039/d2ce00497f.Suche in Google Scholar
25. Schamel, M., Bernhardt, A., Quade, M., Würkner, C., Gbureck, U., Moseke, C., Gelinsky, M., Lode, A. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells. Mater. Sci. Eng. C 2017, 73, 99–110; https://doi.org/10.1016/j.msec.2016.12.052.Suche in Google Scholar PubMed
26. Srinivasan, B., Kolanthai, E., Nivethaa, E. A. K., Pandian, M. S., Ramasamy, P., Catalani, L. H., Kalkura, S. N. Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles. Ceram. Int. 2023, 49, 855–861; https://doi.org/10.1016/j.ceramint.2022.09.058.Suche in Google Scholar
27. Singh, R. K., Srivastava, M., Prasad, N. K., Kannan, S. Structural analysis and hyperthermia effect of Fe3+/Ni2+ co-substitutions in β-Ca3(PO4)2. J. Alloys Compd. 2017, 725, 393–402.10.1016/j.jallcom.2017.07.113Suche in Google Scholar
28. Galuskin, E., Stachowicz, M., Galuskina, I. O., Woźniak, K., Vapnik, Y., Murashko, N. N., Zieliński, G. Deynekoite, IMA 2021-108. Mineral. Mag. 2022, 86, 359–362; https://doi.org/10.1180/mgm.2022.33.Suche in Google Scholar
29. Clark, R. C., Reid, J. S. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr. Sect. A Found. Crystallogr. 1995, 51, 887–897; https://doi.org/10.1107/S0108767395007367.Suche in Google Scholar
30. Agilent Technologies. CrysAlis Pro Software System, 2013.Suche in Google Scholar
31. Petricek, V., Dusek, M., Palatinus, L., Petrícek, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
32. Palatinus, L. Ab initio determination of incommensurately modulated structures by charge flipping in superspace. Acta Crystallogr. Sect. A Found. Crystallogr. 2004, 60, 604–610; https://doi.org/10.1107/S0108767304022433.Suche in Google Scholar PubMed
33. Kurtz, S. K., Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 39, 3798–3813; https://doi.org/10.1063/1.1656857.Suche in Google Scholar
34. Matsunaga, K., Kubota, T., Toyoura, K., Nakamura, A. Acta biomaterialia first-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates. Acta Biomater. 2015, 23, 329–337; https://doi.org/10.1016/j.actbio.2015.05.014.Suche in Google Scholar PubMed
35. Frasnelli, M., Sglavo, V. M. Effect of Mg2+ doping on beta–alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomater. 2016, 33, 283–289; https://doi.org/10.1016/j.actbio.2016.01.015.Suche in Google Scholar PubMed
36. Britvin, S. N., Galuskina, I. O., Vlasenko, N. S., Vereshchagin, O. S., Bocharov, V. N., Krzhizhanovskaya, M. G., Shilovskikh, V. V., Galuskin, E. V., Vapnik, Y., Obolonskaya, E. V. Keplerite, Ca9(Ca0.5☐0.5)Mg(PO4)7, a new meteoritic and terrestrial phosphate isomorphous with merrillite, Ca9NaMg(PO4)7. Am. Mineral. 2021, 106, 1917–1927; https://doi.org/10.2138/am-2021-7834.Suche in Google Scholar
37. Gopal, R., Calvo, C., Ito, J., Sabine, W. K. Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can. J. Chem. 1974, 52, 1155–1164; https://doi.org/10.1139/v74-181.Suche in Google Scholar
38. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767; https://doi.org/10.1107/S0567739476001551.Suche in Google Scholar
39. Yashima, M., Sakai, A., Kamiyama, T., Hoshikawa, A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272–277; https://doi.org/10.1016/S0022-4596(03)00279-2.Suche in Google Scholar
40. Voronina, I. S., Dunaeva, E. E., Papashvili, A. G., Doroshenko, M. E., Ivleva, L. I. Modification of calcium orthovanadate single crystal due to cobalt doping. J. Cryst. Growth 2023, 615, 127242; https://doi.org/10.1016/j.jcrysgro.2023.127242.Suche in Google Scholar
41. Belik, A., Morozov, V., Khasanov, S., Lazoryak, B. Crystal structures of new double calcium and cobalt phosphates. Mater. Res. Bull. 1998, 33, 987–995; https://doi.org/10.1016/S0025-5408(98)00083-X.Suche in Google Scholar
42. International Centre for Diffraction Data. PDF-4+ No 04-010-2972.Suche in Google Scholar
43. International Centre for Diffraction Data. PDF-4+ No 04-020-2028.Suche in Google Scholar
44. Wang, J., Qian, J., Xu, W., Wang, Y., Hou, G., Sun, T., Luo, L. Effects of Sr2+/Zn2+ co-substitution on crystal structure and properties of nano-β-tricalcium phosphate. Ceram. Int. 2018, 44, 6096–6103; https://doi.org/10.1016/j.ceramint.2017.12.242.Suche in Google Scholar
45. Melnikov, P., de Albuquerque, D. M., Naves, T. A., de Oliveira, L. C. S. Synthesis and characterization of zinc-containing whitlockite Ca10Zn10H2(PO4)14 for orthopedic applications. Mater. Lett. 2018, 231, 198–200; https://doi.org/10.1016/j.matlet.2018.08.051.Suche in Google Scholar
46. Stähli, C., Thüring, J., Galea, L., Tadier, S., Bohner, M., Döbelin, N. Hydrogen-substituted β-tricalcium phosphate synthesized in organic media. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 875–884; https://doi.org/10.1107/S2052520616015675.Suche in Google Scholar PubMed PubMed Central
47. Brown, I. D., Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/S0108768185002063.Suche in Google Scholar
48. Brese, N. E., O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/S0108768190011041.Suche in Google Scholar
49. Hughes, J. M., Jolliff, B. L., Rakovan, J. The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. Am. Mineral. 2008, 93, 1300–1305; https://doi.org/10.2138/am.2008.2683.Suche in Google Scholar
50. Sinusaite, L., Kareiva, A., Zarkov, A. Thermally induced crystallization and phase evolution of amorphous calcium phosphate substituted with divalent cations having different sizes. Cryst. Growth Des. 2021, 21, 1242–1248; https://doi.org/10.1021/acs.cgd.0c01534.Suche in Google Scholar
51. Capitelli, F., Bosi, F., Capelli, S. C., Radica, F., Ventura, G. Della neutron and XRD single-crystal diffraction study and vibrational properties of whitlockite, the natural counterpart of synthetic tricalcium phosphate. Crystals 2021, 11, 1–19; https://doi.org/10.3390/cryst11030225.Suche in Google Scholar
52. Belik, A. A., Izumi, F., Stefanovich, S. Y., Lazoryak, B. I., Oikawa, K. Chemical and structural properties of a whitlockite-like phosphate, Ca9FeD(PO4)7. Chem. Mater. 2002, 14, 3937–3945; https://doi.org/10.1021/cm033000h.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0016).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers
- Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
- (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
- Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
- A new layered potassium-based molybdenum–tungsten monophosphate: synthesis, crystal structure, XPS and magnetic studies
- Effect of different boron sources on the copper borates in solid-state synthesis
- Uranyl silicate nanotubules in Rb2[(UO2)2O(Si3O8)]: synthesis and crystal structure
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers
- Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
- (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
- Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
- A new layered potassium-based molybdenum–tungsten monophosphate: synthesis, crystal structure, XPS and magnetic studies
- Effect of different boron sources on the copper borates in solid-state synthesis
- Uranyl silicate nanotubules in Rb2[(UO2)2O(Si3O8)]: synthesis and crystal structure