Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
Abstract
Systematization of the vast number of known crystal structures of intermetallic phases is a challenge. One previously proposed group is referred to here as vacancy variants of the W-type structure. Members of this group, may, however, not be easily recognized because of the structural irregularity introduced by the vacancies. Descriptions of the experimentally observed crystal structures of Ni3Sn4 and FeAl2 in terms of vacancy variants of the W-type structure are, respectively, derived by establishing a lattice correspondence with the W-type structure, allowing, in particular, identification of the vacant sites. In both cases only small deviatoric strains are required to obtain the experimentally encountered lattice parameters, and generally small atomic displacements occur from the ideal positions, thus demonstrating significance of the lattice correspondence. The lattice correspondences allow, for both Ni3Sn4 and FeAl2, relating reported microstructure evidence (directions/planes occurring in orientation relationships and crystal habits but also on twinning and slip) with such typical for metals and solid solutions with W-type (“bcc”) structures. This demonstrates that the established lattice correspondences have a significance going beyond a descriptive one, but the underlying W-type structures reveal themselves in the materials’ behavior.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
1. Schubert, K. Kristallstrukturen Zweikomponentiger Phasen; Springer: Berlin, Heidelberg, 1964.10.1007/978-3-642-94904-3Search in Google Scholar
2. Kripyakevich, P. I. Structure Types of Intermetallic Compounds; Nauka: Moscow, 1977.Search in Google Scholar
3. Steurer, W., Dshemuchadse, J. Intermetallics: structures, properties, and statistics. In Oxford Science Publications, 1st ed.; Oxford University Press: Oxford, Vol. 26, 2016.10.1093/acprof:oso/9780198714552.001.0001Search in Google Scholar
4. Pöttgen, R., Johrendt, D. Intermetallics: Synthesis, Structure, Function; De Gruyter: Berlin, Boston, 2019.10.1515/9783110636727Search in Google Scholar
5. Massalski, T. B., King, H. W. Alloy phases of the noble metals. Prog. Mater. Sci. 1963, 10, 3–78. https://doi.org/10.1016/0079-6425(63)90008-2.Search in Google Scholar
6. Massalski, T., Mizutani, U. Electronic structure of Hume-Rothery phases. Prog. Mater. Sci. 1978, 22, 151–262. https://doi.org/10.1016/0079-6425(78)90001-4.Search in Google Scholar
7. Mizutani, U. Introduction to the Electron Theory of Metals; Cambridge University Press: Cambridge, New York, 2001.10.1017/CBO9780511612626Search in Google Scholar
8. Schubert, K. The two-correlations model, a valence model for metallic phases. Struct. Bond 1977, 33, 139–177.10.1007/BFb0117580Search in Google Scholar
9. Lenz, J., Schubert, K. Über einige Leerstellen- und Stapelvarianten der Beta-Messing Strukturfamilie (On some vacancy and stacking variants of the beta-brass structure family; in German). Z. Metallkd. 1971, 62, 810–816. https://doi.org/10.1515/ijmr-1971-621110.Search in Google Scholar
10. Schubert, K. Crystal structures of beta brass like alloy phases. Trans. Jpn. Inst. Met. 1973, 14, 281–284. https://doi.org/10.2320/matertrans1960.14.281.Search in Google Scholar
11. Bradley, A. J., Thewlis, J. The structure of γ-brass. Proc. Roy. Soc. A 1926, 112, 678–692. https://doi.org/10.1098/rspa.1926.0134.Search in Google Scholar
12. Bradley, A. J., Taylor, A., Bragg, W. L. An X-ray analysis of the nickel-aluminium system. Proc. Roy. Soc. A 1937, 159, 56–72. https://doi.org/10.1098/rspa.1937.0056.Search in Google Scholar
13. Bradley, A. J., Taylor, A. XCIX. The crystal structures of Ni2Al3 and NiAl3. Phil. Mag. 1937, 23, 1049–1067. https://doi.org/10.1080/14786443708561875.Search in Google Scholar
14. Dong, C. The Al5Ni3 structure as approximant of quasicrystals. J. Phys. I France 1995, 5, 1625–1634. https://doi.org/10.1051/jp1:1995109.10.1051/jp1:1995109Search in Google Scholar
15. Kuntze, V., Lux, R., Hillebrecht, H. V2Cu3Ga8, Mo2Cu3Ga8 and W2Cu3Ga8—new compounds with a novel order variant of a bcc packing and motifs of self-similarity. J. Solid State Chem. 2007, 180, 198–206; https://doi.org/10.1016/j.jssc.2006.10.009.Search in Google Scholar
16. Lux, R., Kuntze, V., Hillebrecht, H. Synthesis and crystal structure of cubic V11Cu9Ga46 – a 512-fold super structure of a simple bcc packing. Solid State Sci. 2012, 14, 1445–1453. https://doi.org/10.1016/j.solidstatesciences.2012.07.028.Search in Google Scholar
17. Koffi, A., Ade, M., Hillebrecht, H. Synthesis, single crystal growth and crystal structure of Ta7Cu10Ga34 – a 8 × 4 × 2 super structure of CsCl. Z. Anorg. Allg. Chem. 2016, 642, 350–354. https://doi.org/10.1002/zaac.201500800.Search in Google Scholar
18. Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Gilli, G., Gilli, P., Zanotti, G., Ferraris, G., Catti, M. Fundamentals of Crystallography; Oxford University Press: Oxford, 2011.10.1093/acprof:oso/9780199573653.001.0001Search in Google Scholar
19. Hahn, T., Ed. International Tables for Crystallography, 5th ed., 1st online ed.; Springer Netherland: Berlin, 2007.10.1107/97809553602060000100Search in Google Scholar
20. Bhattacharya, K. Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect? Oxford University Press: Oxford, UK, 2012.Search in Google Scholar
21. Koumatos, K., Muehlemann, A. Optimality of general lattice transformations with applications to the Bain strain in steel. Proc. Roy. Soc. A 2016, 472, 20150865. https://doi.org/10.1098/rspa.2015.0865.Search in Google Scholar PubMed PubMed Central
22. Chen, X., Song, Y., Tamura, N., James, R. D. Determination of the stretch tensor for structural transformations. J. Mech. Phys. Solids 2016, 93, 34–43. https://doi.org/10.1016/j.jmps.2016.02.009.Search in Google Scholar
23. Aizu, K. Determination of the state parameters and formulation of spontaneous strain for ferroelastics. J. Phys. Soc. Jpn. 1970, 28, 706–716. https://doi.org/10.1143/JPSJ.28.706.Search in Google Scholar
24. Momma, K., Izumi, F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. https://doi.org/10.1107/S0021889811038970.Search in Google Scholar
25. Palmer, D. C. Visualization and analysis of crystal structures using CrystalMaker software. Z. Kristallogr. 2015, 230, 559–572. https://doi.org/10.1515/zkri-2015-1869.Search in Google Scholar
26. Laurila, T., Vuorinen, V., Kivilahti, J. K. Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R 2005, 49, 1–60. https://doi.org/10.1016/j.mser.2005.03.001.Search in Google Scholar
27. Schimpf, C., Kalanke, P., Shang, S. L., Liu, Z. K., Leineweber, A. Stacking disorder in metastable NiSn4. Mater. Des. 2016, 109, 324–333. https://doi.org/10.1016/j.matdes.2016.07.002.Search in Google Scholar
28. Leineweber, A., Wolf, C., Kalanke, P., Schimpf, C., Becker, H., Shang, S. L., Liu, Z. K. From random stacking faults to polytypes: a 12-layer NiSn4 polytype. J. Alloys Compd. 2019, 774, 265–273. https://doi.org/10.1016/j.jallcom.2018.09.341.Search in Google Scholar
29. Schmetterer, C., Flandorfer, H., Richter, K. W., Saeed, U., Kauffman, M., Roussel, P., Ipser, H. A new investigation of the system Ni–Sn. Intermetallics 2007, 15, 869–884. https://doi.org/10.1016/j.intermet.2006.10.045.Search in Google Scholar
30. Nowotny, H., Schubert, K. Die Kristallstruktur von Ni3Sn4. Naturwissenschaften 1944, 32, 76. https://doi.org/10.1007/BF01468013.Search in Google Scholar
31. Nowotny, H., Schubert, K. Die Kristallstruktur von Ni3Sn4. Z. Metallkd. 1946, 37, 23–31. https://doi.org/10.1515/ijmr-1946-371-204.Search in Google Scholar
32. Jeitschko, W., Jaberg, B. Structure refinement of Ni3Sn4. Acta Crystallogr. B 1982, 38, 598–600. https://doi.org/10.1107/S056774088200346X.Search in Google Scholar
33. Furuseth, S., Fjellvag, H., Marøy, K. Structural properties of Ni3+xSn4. Acta Chem. Scand. A 1986, 40, 695–700; https://doi.org/10.3891/acta.chem.scand.40a-0695.Search in Google Scholar
34. Bhan, S., Schubert, K. Zum Aufbau der Systeme Kobalt-Germanium, Rhodium-Silizium sowie einiger verwandter Legierungen. Z. Metallkd. 1960, 51, 327–339. https://doi.org/10.1515/ijmr-1960-510604.Search in Google Scholar
35. Richardson, M., Kierkegaard, P., Santesson, J., Holmberg, P., Eriksson, G., Blinc, R., Paušak, S., Ehrenberg, L., Dumanović, J. Crystal structure refinements of the B 20 and monoclinic (CoGe-type) polymorphs of FeGe. Acta Chem. Scand. 1967, 21, 753–760; https://doi.org/10.3891/acta.chem.scand.21-0753.Search in Google Scholar
36. Bhargava, M. K., Schubert, K. Kristallstruktur von NiSn. J. Less-Common Met. 1973, 33, 181–189. https://doi.org/10.1016/0022-5088(73)90037-4.Search in Google Scholar
37. Lihl, F., Kirnbauer, H. Untersuchung binärer metallischer Systeme mit Hilfe des Amalgamverfahrens. Das System Nickel-Zinn. Monatsh. Chem. 1955, 86, 745–751. https://doi.org/10.1007/BF00902566.Search in Google Scholar
38. Ma, Z. L., Xian, J. W., Belyakov, S. A., Gourlay, C. M. Nucleation and twinning in tin droplet solidification on single crystal intermetallic compounds. Acta Mater. 2018, 150, 281–294. https://doi.org/10.1016/j.actamat.2018.02.047.Search in Google Scholar
39. Yu, L. J., Yen, H. W., Wu, J. Y., Yu, J. J., Kao, C. R. Micromechanical behavior of single crystalline Ni3Sn4 in micro joints for chip-stacking applications. Mater. Sci. Eng., A 2017, 685, 123–130. https://doi.org/10.1016/j.msea.2017.01.004.Search in Google Scholar
40. Christian, J. W., Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. https://doi.org/10.1016/0079-6425(94)00007-7.Search in Google Scholar
41. Weinberger, C. R., Boyce, B. L., Battaile, C. C. Slip planes in bcc transition metals. Int. Mater. Rev. 2013, 58, 296–314. https://doi.org/10.1179/1743280412Y.0000000015.Search in Google Scholar
42. Corby, R. N., Black, P. J. The structure of FeAl2 by anomalous dispersion methods. Acta Crystallogr. B 1973, 29, 2669–2677. https://doi.org/10.1107/S056774087300734X.Search in Google Scholar
43. Bastin, G. F., van Loo, F., Vrolijk, J., Wolff, L. R. Crystallography of aligned Fe-Al eutectoid. J. Cryst. Growth 1978, 43, 745–751. https://doi.org/10.1016/0022-0248(78)90155-0.Search in Google Scholar
44. Hirata, A., Mori, Y., Ishimaru, M., Koyama, Y. Role of the triclinic Al2Fe structure in the formation of the Al5Fe2-approximant. Phil. Mag. Lett. 2008, 88, 491–500. https://doi.org/10.1080/09500830802247151.Search in Google Scholar
45. Chumak, I., Richter, K. W., Ehrenberg, H. Redetermination of iron dialuminide, FeAl2. . Acta Crystallogr. C 2010, 66, i87–i88. https://doi.org/10.1107/S0108270110033202.Search in Google Scholar PubMed
46. Mihalkovic, M., Widom, M. Structure and stability of Al2Fe and Al5Fe2: first-principles total energy and phonon calculations. Phys. Rev. B 2012, 85, 14113. https://doi.org/10.1103/PhysRevB.85.014113.Search in Google Scholar
47. Scherf, A., Kauffmann, A., Kauffmann-Weiss, S., Scherer, T., Li, X., Stein, F., Heilmaier, M. Orientation relationship of eutectoid FeAl and FeAl2. J. Appl. Crystallogr. 2016, 49, 442–449. https://doi.org/10.1107/S1600576716000911.Search in Google Scholar PubMed PubMed Central
48. Li, L.-L., Su, Y., Beyerlein, I. J., Han, W.-Z. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe–Al alloys. Sci. Adv. 2020, 6, eabb6658. https://doi.org/10.1126/sciadv.abb6658.Search in Google Scholar PubMed PubMed Central
49. Schmitt, A., Kumar, K. S., Kauffmann, A., Heilmaier, M. Microstructural evolution during creep of lamellar eutectoid and off-eutectoid FeAl/FeAl2 alloys. Intermetallics 2019, 107, 116–125; https://doi.org/10.1016/j.intermet.2019.01.015.Search in Google Scholar
50. Li, L., Beyerlein, I. J., Han, W. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature. J. Mater. Sci. Technol. 2021, 73, 61–65; https://doi.org/10.1016/j.jmst.2020.09.018.Search in Google Scholar
51. Balanetskyy, S., Grushko, B., Velikanova, T. Y. Monoclinic Al2Fe phase, its equilibrium and nonequilibrium formation. Metallofiz. Noveishie Tekhnol. 2004, 26, 407–417.Search in Google Scholar
52. Ilatovskaia, M., Becker, H., Fabrichnaya, O., Leineweber, A. The η-Al5Fe2 phase in the Al–Fe system: the issue with the sublattice model. J. Alloys Compd. 2023, 936, 168361. https://doi.org/10.1016/j.jallcom.2022.168361.Search in Google Scholar
53. Gibson, J. S. K.-L., Pei, R., Heller, M., Medghalchi, S., Luo, W., Korte-Kerzel, S. Finding and characterising active slip systems: a short review and tutorial with automation tools. Materials 2021, 14, 407. https://doi.org/10.3390/ma14020407.Search in Google Scholar PubMed PubMed Central
54. Kamimura, Y., Edagawa, K., Takeuchi, S. Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 2013, 61, 294–309. https://doi.org/10.1016/j.actamat.2012.09.059.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers
- Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
- (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
- Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
- A new layered potassium-based molybdenum–tungsten monophosphate: synthesis, crystal structure, XPS and magnetic studies
- Effect of different boron sources on the copper borates in solid-state synthesis
- Uranyl silicate nanotubules in Rb2[(UO2)2O(Si3O8)]: synthesis and crystal structure
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers
- Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction
- (Ca0.95Cd0.10)Pd2Cd3, SrPd2Cd3 and (Eu0.95Cd0.10)Pd2Cd3 with YNi2Al3 type structure – crystal chemistry and magnetic hyperfine interactions
- Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
- A new layered potassium-based molybdenum–tungsten monophosphate: synthesis, crystal structure, XPS and magnetic studies
- Effect of different boron sources on the copper borates in solid-state synthesis
- Uranyl silicate nanotubules in Rb2[(UO2)2O(Si3O8)]: synthesis and crystal structure