Home Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure
Article
Licensed
Unlicensed Requires Authentication

Ni3Sn4 and FeAl2 as vacancy variants of the W-type (“bcc”) structure

An erratum for this article can be found here: https://doi.org/10.1515/zkri-2025-2001
  • Andreas Leineweber ORCID logo EMAIL logo
Published/Copyright: August 1, 2023

Abstract

Systematization of the vast number of known crystal structures of intermetallic phases is a challenge. One previously proposed group is referred to here as vacancy variants of the W-type structure. Members of this group, may, however, not be easily recognized because of the structural irregularity introduced by the vacancies. Descriptions of the experimentally observed crystal structures of Ni3Sn4 and FeAl2 in terms of vacancy variants of the W-type structure are, respectively, derived by establishing a lattice correspondence with the W-type structure, allowing, in particular, identification of the vacant sites. In both cases only small deviatoric strains are required to obtain the experimentally encountered lattice parameters, and generally small atomic displacements occur from the ideal positions, thus demonstrating significance of the lattice correspondence. The lattice correspondences allow, for both Ni3Sn4 and FeAl2, relating reported microstructure evidence (directions/planes occurring in orientation relationships and crystal habits but also on twinning and slip) with such typical for metals and solid solutions with W-type (“bcc”) structures. This demonstrates that the established lattice correspondences have a significance going beyond a descriptive one, but the underlying W-type structures reveal themselves in the materials’ behavior.


Corresponding author: Andreas Leineweber, Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Schubert, K. Kristallstrukturen Zweikomponentiger Phasen; Springer: Berlin, Heidelberg, 1964.10.1007/978-3-642-94904-3Search in Google Scholar

2. Kripyakevich, P. I. Structure Types of Intermetallic Compounds; Nauka: Moscow, 1977.Search in Google Scholar

3. Steurer, W., Dshemuchadse, J. Intermetallics: structures, properties, and statistics. In Oxford Science Publications, 1st ed.; Oxford University Press: Oxford, Vol. 26, 2016.10.1093/acprof:oso/9780198714552.001.0001Search in Google Scholar

4. Pöttgen, R., Johrendt, D. Intermetallics: Synthesis, Structure, Function; De Gruyter: Berlin, Boston, 2019.10.1515/9783110636727Search in Google Scholar

5. Massalski, T. B., King, H. W. Alloy phases of the noble metals. Prog. Mater. Sci. 1963, 10, 3–78. https://doi.org/10.1016/0079-6425(63)90008-2.Search in Google Scholar

6. Massalski, T., Mizutani, U. Electronic structure of Hume-Rothery phases. Prog. Mater. Sci. 1978, 22, 151–262. https://doi.org/10.1016/0079-6425(78)90001-4.Search in Google Scholar

7. Mizutani, U. Introduction to the Electron Theory of Metals; Cambridge University Press: Cambridge, New York, 2001.10.1017/CBO9780511612626Search in Google Scholar

8. Schubert, K. The two-correlations model, a valence model for metallic phases. Struct. Bond 1977, 33, 139–177.10.1007/BFb0117580Search in Google Scholar

9. Lenz, J., Schubert, K. Über einige Leerstellen- und Stapelvarianten der Beta-Messing Strukturfamilie (On some vacancy and stacking variants of the beta-brass structure family; in German). Z. Metallkd. 1971, 62, 810–816. https://doi.org/10.1515/ijmr-1971-621110.Search in Google Scholar

10. Schubert, K. Crystal structures of beta brass like alloy phases. Trans. Jpn. Inst. Met. 1973, 14, 281–284. https://doi.org/10.2320/matertrans1960.14.281.Search in Google Scholar

11. Bradley, A. J., Thewlis, J. The structure of γ-brass. Proc. Roy. Soc. A 1926, 112, 678–692. https://doi.org/10.1098/rspa.1926.0134.Search in Google Scholar

12. Bradley, A. J., Taylor, A., Bragg, W. L. An X-ray analysis of the nickel-aluminium system. Proc. Roy. Soc. A 1937, 159, 56–72. https://doi.org/10.1098/rspa.1937.0056.Search in Google Scholar

13. Bradley, A. J., Taylor, A. XCIX. The crystal structures of Ni2Al3 and NiAl3. Phil. Mag. 1937, 23, 1049–1067. https://doi.org/10.1080/14786443708561875.Search in Google Scholar

14. Dong, C. The Al5Ni3 structure as approximant of quasicrystals. J. Phys. I France 1995, 5, 1625–1634. https://doi.org/10.1051/jp1:1995109.10.1051/jp1:1995109Search in Google Scholar

15. Kuntze, V., Lux, R., Hillebrecht, H. V2Cu3Ga8, Mo2Cu3Ga8 and W2Cu3Ga8—new compounds with a novel order variant of a bcc packing and motifs of self-similarity. J. Solid State Chem. 2007, 180, 198–206; https://doi.org/10.1016/j.jssc.2006.10.009.Search in Google Scholar

16. Lux, R., Kuntze, V., Hillebrecht, H. Synthesis and crystal structure of cubic V11Cu9Ga46 – a 512-fold super structure of a simple bcc packing. Solid State Sci. 2012, 14, 1445–1453. https://doi.org/10.1016/j.solidstatesciences.2012.07.028.Search in Google Scholar

17. Koffi, A., Ade, M., Hillebrecht, H. Synthesis, single crystal growth and crystal structure of Ta7Cu10Ga34 – a 8 × 4 × 2 super structure of CsCl. Z. Anorg. Allg. Chem. 2016, 642, 350–354. https://doi.org/10.1002/zaac.201500800.Search in Google Scholar

18. Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Gilli, G., Gilli, P., Zanotti, G., Ferraris, G., Catti, M. Fundamentals of Crystallography; Oxford University Press: Oxford, 2011.10.1093/acprof:oso/9780199573653.001.0001Search in Google Scholar

19. Hahn, T., Ed. International Tables for Crystallography, 5th ed., 1st online ed.; Springer Netherland: Berlin, 2007.10.1107/97809553602060000100Search in Google Scholar

20. Bhattacharya, K. Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect? Oxford University Press: Oxford, UK, 2012.Search in Google Scholar

21. Koumatos, K., Muehlemann, A. Optimality of general lattice transformations with applications to the Bain strain in steel. Proc. Roy. Soc. A 2016, 472, 20150865. https://doi.org/10.1098/rspa.2015.0865.Search in Google Scholar PubMed PubMed Central

22. Chen, X., Song, Y., Tamura, N., James, R. D. Determination of the stretch tensor for structural transformations. J. Mech. Phys. Solids 2016, 93, 34–43. https://doi.org/10.1016/j.jmps.2016.02.009.Search in Google Scholar

23. Aizu, K. Determination of the state parameters and formulation of spontaneous strain for ferroelastics. J. Phys. Soc. Jpn. 1970, 28, 706–716. https://doi.org/10.1143/JPSJ.28.706.Search in Google Scholar

24. Momma, K., Izumi, F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. https://doi.org/10.1107/S0021889811038970.Search in Google Scholar

25. Palmer, D. C. Visualization and analysis of crystal structures using CrystalMaker software. Z. Kristallogr. 2015, 230, 559–572. https://doi.org/10.1515/zkri-2015-1869.Search in Google Scholar

26. Laurila, T., Vuorinen, V., Kivilahti, J. K. Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R 2005, 49, 1–60. https://doi.org/10.1016/j.mser.2005.03.001.Search in Google Scholar

27. Schimpf, C., Kalanke, P., Shang, S. L., Liu, Z. K., Leineweber, A. Stacking disorder in metastable NiSn4. Mater. Des. 2016, 109, 324–333. https://doi.org/10.1016/j.matdes.2016.07.002.Search in Google Scholar

28. Leineweber, A., Wolf, C., Kalanke, P., Schimpf, C., Becker, H., Shang, S. L., Liu, Z. K. From random stacking faults to polytypes: a 12-layer NiSn4 polytype. J. Alloys Compd. 2019, 774, 265–273. https://doi.org/10.1016/j.jallcom.2018.09.341.Search in Google Scholar

29. Schmetterer, C., Flandorfer, H., Richter, K. W., Saeed, U., Kauffman, M., Roussel, P., Ipser, H. A new investigation of the system Ni–Sn. Intermetallics 2007, 15, 869–884. https://doi.org/10.1016/j.intermet.2006.10.045.Search in Google Scholar

30. Nowotny, H., Schubert, K. Die Kristallstruktur von Ni3Sn4. Naturwissenschaften 1944, 32, 76. https://doi.org/10.1007/BF01468013.Search in Google Scholar

31. Nowotny, H., Schubert, K. Die Kristallstruktur von Ni3Sn4. Z. Metallkd. 1946, 37, 23–31. https://doi.org/10.1515/ijmr-1946-371-204.Search in Google Scholar

32. Jeitschko, W., Jaberg, B. Structure refinement of Ni3Sn4. Acta Crystallogr. B 1982, 38, 598–600. https://doi.org/10.1107/S056774088200346X.Search in Google Scholar

33. Furuseth, S., Fjellvag, H., Marøy, K. Structural properties of Ni3+xSn4. Acta Chem. Scand. A 1986, 40, 695–700; https://doi.org/10.3891/acta.chem.scand.40a-0695.Search in Google Scholar

34. Bhan, S., Schubert, K. Zum Aufbau der Systeme Kobalt-Germanium, Rhodium-Silizium sowie einiger verwandter Legierungen. Z. Metallkd. 1960, 51, 327–339. https://doi.org/10.1515/ijmr-1960-510604.Search in Google Scholar

35. Richardson, M., Kierkegaard, P., Santesson, J., Holmberg, P., Eriksson, G., Blinc, R., Paušak, S., Ehrenberg, L., Dumanović, J. Crystal structure refinements of the B 20 and monoclinic (CoGe-type) polymorphs of FeGe. Acta Chem. Scand. 1967, 21, 753–760; https://doi.org/10.3891/acta.chem.scand.21-0753.Search in Google Scholar

36. Bhargava, M. K., Schubert, K. Kristallstruktur von NiSn. J. Less-Common Met. 1973, 33, 181–189. https://doi.org/10.1016/0022-5088(73)90037-4.Search in Google Scholar

37. Lihl, F., Kirnbauer, H. Untersuchung binärer metallischer Systeme mit Hilfe des Amalgamverfahrens. Das System Nickel-Zinn. Monatsh. Chem. 1955, 86, 745–751. https://doi.org/10.1007/BF00902566.Search in Google Scholar

38. Ma, Z. L., Xian, J. W., Belyakov, S. A., Gourlay, C. M. Nucleation and twinning in tin droplet solidification on single crystal intermetallic compounds. Acta Mater. 2018, 150, 281–294. https://doi.org/10.1016/j.actamat.2018.02.047.Search in Google Scholar

39. Yu, L. J., Yen, H. W., Wu, J. Y., Yu, J. J., Kao, C. R. Micromechanical behavior of single crystalline Ni3Sn4 in micro joints for chip-stacking applications. Mater. Sci. Eng., A 2017, 685, 123–130. https://doi.org/10.1016/j.msea.2017.01.004.Search in Google Scholar

40. Christian, J. W., Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. https://doi.org/10.1016/0079-6425(94)00007-7.Search in Google Scholar

41. Weinberger, C. R., Boyce, B. L., Battaile, C. C. Slip planes in bcc transition metals. Int. Mater. Rev. 2013, 58, 296–314. https://doi.org/10.1179/1743280412Y.0000000015.Search in Google Scholar

42. Corby, R. N., Black, P. J. The structure of FeAl2 by anomalous dispersion methods. Acta Crystallogr. B 1973, 29, 2669–2677. https://doi.org/10.1107/S056774087300734X.Search in Google Scholar

43. Bastin, G. F., van Loo, F., Vrolijk, J., Wolff, L. R. Crystallography of aligned Fe-Al eutectoid. J. Cryst. Growth 1978, 43, 745–751. https://doi.org/10.1016/0022-0248(78)90155-0.Search in Google Scholar

44. Hirata, A., Mori, Y., Ishimaru, M., Koyama, Y. Role of the triclinic Al2Fe structure in the formation of the Al5Fe2-approximant. Phil. Mag. Lett. 2008, 88, 491–500. https://doi.org/10.1080/09500830802247151.Search in Google Scholar

45. Chumak, I., Richter, K. W., Ehrenberg, H. Redetermination of iron dialuminide, FeAl2. . Acta Crystallogr. C 2010, 66, i87–i88. https://doi.org/10.1107/S0108270110033202.Search in Google Scholar PubMed

46. Mihalkovic, M., Widom, M. Structure and stability of Al2Fe and Al5Fe2: first-principles total energy and phonon calculations. Phys. Rev. B 2012, 85, 14113. https://doi.org/10.1103/PhysRevB.85.014113.Search in Google Scholar

47. Scherf, A., Kauffmann, A., Kauffmann-Weiss, S., Scherer, T., Li, X., Stein, F., Heilmaier, M. Orientation relationship of eutectoid FeAl and FeAl2. J. Appl. Crystallogr. 2016, 49, 442–449. https://doi.org/10.1107/S1600576716000911.Search in Google Scholar PubMed PubMed Central

48. Li, L.-L., Su, Y., Beyerlein, I. J., Han, W.-Z. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe–Al alloys. Sci. Adv. 2020, 6, eabb6658. https://doi.org/10.1126/sciadv.abb6658.Search in Google Scholar PubMed PubMed Central

49. Schmitt, A., Kumar, K. S., Kauffmann, A., Heilmaier, M. Microstructural evolution during creep of lamellar eutectoid and off-eutectoid FeAl/FeAl2 alloys. Intermetallics 2019, 107, 116–125; https://doi.org/10.1016/j.intermet.2019.01.015.Search in Google Scholar

50. Li, L., Beyerlein, I. J., Han, W. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature. J. Mater. Sci. Technol. 2021, 73, 61–65; https://doi.org/10.1016/j.jmst.2020.09.018.Search in Google Scholar

51. Balanetskyy, S., Grushko, B., Velikanova, T. Y. Monoclinic Al2Fe phase, its equilibrium and nonequilibrium formation. Metallofiz. Noveishie Tekhnol. 2004, 26, 407–417.Search in Google Scholar

52. Ilatovskaia, M., Becker, H., Fabrichnaya, O., Leineweber, A. The η-Al5Fe2 phase in the Al–Fe system: the issue with the sublattice model. J. Alloys Compd. 2023, 936, 168361. https://doi.org/10.1016/j.jallcom.2022.168361.Search in Google Scholar

53. Gibson, J. S. K.-L., Pei, R., Heller, M., Medghalchi, S., Luo, W., Korte-Kerzel, S. Finding and characterising active slip systems: a short review and tutorial with automation tools. Materials 2021, 14, 407. https://doi.org/10.3390/ma14020407.Search in Google Scholar PubMed PubMed Central

54. Kamimura, Y., Edagawa, K., Takeuchi, S. Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 2013, 61, 294–309. https://doi.org/10.1016/j.actamat.2012.09.059.Search in Google Scholar

Received: 2023-05-25
Accepted: 2023-07-18
Published Online: 2023-08-01
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0021/html
Scroll to top button