Startseite Effect of different boron sources on the copper borates in solid-state synthesis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of different boron sources on the copper borates in solid-state synthesis

  • Fatma Tugce Senberber Dumanli ORCID logo , Sibel Kavci Karaagac ORCID logo , Azmi Seyhun Kipcak ORCID logo und Emek Moroydor Derun ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. August 2023

Abstract

The copper borate of CuB2O4 in tetragonal form was successfully synthesized as a single-phase by using a solid-state method without using any modifying agent. For the designed experimental procedure, the optimized reaction conditions were estimated as a reaction temperature of 950 °C, reaction time of 240 min, argon atmosphere and Cu:B ratio of 1:5. The possible reaction mechanism estimated for both boron sources of boric acid and boron oxide. In both sets, the lower ratios of Cu:B supported CuB2O4 formation. In the use of boric acid as a boron source, higher reaction yield percentages (98 %) and lower particle sizes were determined. The micron-scale rounded particles were observed in morphological analyses and the particles were shaped in homogeneity in the use of boron oxide as a boron source. The specific FT-IR peaks were observed at the band values of 1190, 1035, 988, 945, 890, 695, 631, 540 and 479 cm−1. The experimental results highlighted the probable use of solid-state in the copper borate synthesis.


Corresponding author: Emek Moroydor Derun, Department of Chemical Engineering, Yildiz Technical University, Istanbul, Türkiye, E-mail:

  1. Research ethics: Not applicable.

  2. Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Adair, R. Boron; The Rosen Publishing Group Inc.: New York, 2007.Suche in Google Scholar

2. Demirkiran, N. Leaching kinetics of calcined ulexite in ammonium nitrate solutions. J. Chem. Eng. Jpn. 2007, 40, 755–760. https://doi.org/10.1252/jcej.07WE027.Suche in Google Scholar

3. Vardar, D. S., Senberber, F. T., Kipcak, A. S., Tugrul, N. A green sonochemical synthesis of zinc borates from Zn5(CO3)2·(OH)6. Main Group Chem. 2017, 16, 163–173. https://doi.org/10.3233/MGC-170234.Suche in Google Scholar

4. Pisarev, R. V., Boldyrev, K. N., Popova, M. N., Smirnov, A. N., Davydov, V. Y., Bezmaternykh, L. N., Smirnov, M. B., Kazimirov, V. Y. Lattice dynamics of piezoelectric copper metaborate CuB2O4. Phys. Rev. B Condens. Matter 2013, 88, 024301. https://doi.org/10.1103/PhysRevB.88.024301.Suche in Google Scholar

5. Liu, W., Qiu, Q., Zhang, M., Su, Z., An, Q., Lv, H., Jia, Z., Yang, G. Two new Cu-based borate catalysts with cubic supramolecular cages for efficient catalytic hydrogen evolution. Dalton Trans. 2020, 49, 10156–10161. https://doi.org/10.1039/D0DT01994A.Suche in Google Scholar PubMed

6. Soylu, M., Al-Ghamdi, A. A., Bin Omran, S., Yakuphanoglu, F. Rectifying structure with high voltage operation based on CuBO2 as an UV photocatalyst. J. Alloys Compd. 2014, 617, 602–608. https://doi.org/10.1016/j.jallcom.2014.08.048.Suche in Google Scholar

7. Thatribud, A., Tungsurat, T., Pengpan, T. First-principles study on electronic and optical properties of transparent conducting oxide CuBO2. Comput. Mater. Sci. 2014, 81, 601–606. https://doi.org/10.1016/j.commatsci.2013.09.023.Suche in Google Scholar

8. Zhang, H. H., Kong, N., Wang, J., Liu, Z. H. Thermodynamic properties of microporous materials for two copper borates, MCuB7O12·H2O (M = Na, K). J. Chem. Thermodynamics 2015, 89, 164–168. https://doi.org/10.1016/j.jct.2015.04.038.Suche in Google Scholar

9. Hu, Z. S., Dong, J. X., Chen, G. X., Lou, F. Preparation of nanometer copper borate with supercritical carbon dioxide drying. Powder Technol. 1999, 102, 171–176. https://doi.org/10.1016/S0032-5910(98)00190-9.Suche in Google Scholar

10. Santra, S., Das, N. S., Maiti, S., Chattopadhyay, K. K. Wide band gap p-type CuBO2 nanostructures by hydrothermal route and fabrication high quality p-CuBO2/n-ZnO nano-heterojunction. Chem. Phys. Lett. 2014, 604, 97–100. https://doi.org/10.1016/j.cplett.2014.04.052.Suche in Google Scholar

11. Szwagierczak, D., Synkiewicz-Musialska, B., Kulawik, J., Pałka, N. Sintering, microstructure, and dielectric properties of copper borates for high frequency LTCC applications. Materials 2021, 14, 1–11. https://doi.org/10.3390/ma14144017.Suche in Google Scholar PubMed PubMed Central

12. Wang, J. J., Wei, Q., Yang, B. F., Yang, G. Y. Two new copper borates with mesoscale cubic supramolecular cages assembled from {Cu4@B20} clusters. Chem. Eur. J. 2017, 23, 2774–2777. https://doi.org/10.1002/chem.201605735.Suche in Google Scholar PubMed

13. Vorobyova, A. A., Shilov, A. I., Spiridonov, F. M., Knotko, A. V., Danilovich, I. L., Vasiliev, A. N., Morozov, I. V. One-dimensional magnet basic copper(II) dihydroxoborate Cu2{BO(OH)2}(OH)3: synthesis and properties. Russ. Chem. Bull. 2020, 69, 704–711. https://doi.org/10.1007/s11172-020-2821-8.Suche in Google Scholar

14. Ursu, D., Dabici, A., Miclau, M., Miclau, N. Low-temperature hydrothermal synthesis of hierarchical flower-like CuB2O4 superstructures. Process. Appl. Ceram. 2020, 14, 113–118. https://doi.org/10.2298/PAC2002113U.Suche in Google Scholar

15. Zheng, Y., Wang, Z., Tian, Y., Qu, Y., Li, S., An, D., Chen, X., Guan, S. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies. Colloids Surf. A Physicochem. Eng. Asp. 2009, 349, 156–161. https://doi.org/10.1016/j.colsurfa.2009.08.012.Suche in Google Scholar

16. Zia, W., Siraj, K., Faiz, H., Firdos, A. A facile synthesis of single phase delafossite CuBO2 powders. Mater. Res. Express 2019, 6, 096314. https://doi.org/10.1088/2053-1591/ab317f.Suche in Google Scholar

17. Alp, B., Atakul Savrik, S., Balkose, D. Preparation and characterization of copper borates as lubricant additives. J. Mater. Sci. Eng. 2014, 4, 95–108. https://doi.org/10.17265/2161-6221/2014.04.004.Suche in Google Scholar

18. Khalili, D., Evazi, R., Neshat, A., Aboonajmi, J. Copper(I) complex of dihydro bis(2-mercapto benzimidazolyl) borate as an efficient homogeneous catalyst for the synthesis of 2H-indazoles and 5-substituted 1H-tetrazoles. ChemistrySelect 2021, 6, 746–753. https://doi.org/10.1002/slct.202004387.Suche in Google Scholar

19. Kipcak, A. S., Senberber, F. T., Yuksel Aydın, S., Moroydor Derun, E., Piskin, S. Synthesis, characterisation, electrical and optical properties of copper borate compounds. Mater. Res. Bull. 2015, 70, 442–448. https://doi.org/10.1016/j.materresbull.2015.05.003.Suche in Google Scholar

20. Tascioglu, S., Akin, Z. High temperature reactions of boron oxide and nickel with copper (I and II) or silver oxide. Indian J. Chem., Sect. A 1997, 36A, 397–405.10.1002/chin.199747285Suche in Google Scholar

21. Fogler, H. S. Element of Chemical Reaction Engineering; Pearson: London, 1999.Suche in Google Scholar

22. Ibroska, T., Kipcak, A. S., Aydin Yuksel, S., Derun, E., Piskin, S. Synthesis, characterization, and electrical and optical properties of magnesium-type boracite. Turk. J. Chem. 2015, 39, 1025–1037; https://doi.org/10.3906/kim-1410-37.Suche in Google Scholar

23. Ouis, M. A., Marzouk, M. A. Comparative optical, FTIR and photoluminescence spectral analysis of copper ions in BaO–B2O3, SrO– B2O3 or Bi2O3– B2O3 glasses and impact of gamma irradiation. J. Lumin. 2020, 223, 117242. https://doi.org/10.1016/j.jlumin.2020.117242.Suche in Google Scholar

24. Yongzhong, J., Shiyang, G., Shuping, X., Jun, L. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate. Spectrochim. Acta A 2000, 56, 1291–1297. https://doi.org/10.1016/S1386-1425(99)00227-9.Suche in Google Scholar

25. Erfani, M., Saion, E., Soltani, N., Hashim, M., Abdullah, W., Navasery, M. Facile synthesis of calcium borate nanoparticles and the annealing effect on their structure and size. Int. J. Mol. Sci. 2012, 13, 14434–14445. https://doi.org/10.3390/ijms131114434.Suche in Google Scholar PubMed PubMed Central

Received: 2023-06-06
Accepted: 2023-08-07
Published Online: 2023-08-28
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0023/html?lang=de
Button zum nach oben scrollen