Startseite Magnesium and barium in two substructures: BaTMg2 (T = Pd, Ag, Pt, Au) and the isotypic cadmium compound BaAuCd2 with MgCuAl2 type structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnesium and barium in two substructures: BaTMg2 (T = Pd, Ag, Pt, Au) and the isotypic cadmium compound BaAuCd2 with MgCuAl2 type structure

  • Maximilian Kai Reimann und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 23. November 2022

Abstract

The intermetallic barium compounds BaTMg2 (T = Pd, Ag, Pt, Au) and BaAuCd2 were synthesized by reactions of the elements in sealed tantalum ampoules in muffle furnaces. The five compounds crystallize with the orthorhombic MgCuAl2 type structure, space group Cmcm, with small differences in chemical bonding between the magnesium and cadmium series. All samples were characterized through their Guinier powder diffraction patterns. The structures of BaPdMg2 (a = 444.57(4), b = 1174.67(10), c = 827.58(7) pm, wR2 = 0.0460, 475 F2 values, 16 variables), BaAuMg2 (a = 450.27(6), b = 1183.94(16), c = 838.76(11) pm, wR2 = 0.0355, 473 F2 values, 16 variables) and BaAuCd2 (a = 463.31(5), b = 1112.79(12), c = 826.63(8) pm, wR2 = 0.0453, 469 F2 values, 16 variables) were refined from single crystal X-ray diffraction data. The large barium atoms push the [TMg2] respectively [AuCd2] substructures apart. This allows fast moisture attack and leads to fast hydrolyzes of the samples when they get in contact with water. The influence of the difference in electronegativity between magnesium and cadmium is reflected for the pair of compounds BaAuMg2 and BaAuCd2. The magnesium compound shows the higher auridic character, while the cadmium compound shows a tendency towards a three-dimensional cadmium substructure.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters for collecting the single crystal data sets.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Perlitz, H., Westgren, A. Ark. Kemi, Mineral. Geol. B 1943, 16, 1–5.Suche in Google Scholar

2. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491–494; https://doi.org/10.1515/znb-2005-0502.Suche in Google Scholar

3. Wang, S. C., Starink, M. J. Int. Mater. Rev. 2005, 50, 193–215; https://doi.org/10.1179/174328005x14357.Suche in Google Scholar

4. Styles, M. J., Hutchinson, C. R., Chen, Y., Deschamps, A., Bastow, T. J. Acta Mater. 2012, 60, 6940–6951; https://doi.org/10.1016/j.actamat.2012.08.044.Suche in Google Scholar

5. Zhu, C., Lv, K., Chen, B. J. Mater. Res. 2020, 35, 1582–1589; https://doi.org/10.1557/jmr.2020.74.Suche in Google Scholar

6. Toros, S., Ozturk, F., Kacar, I. J. Mater. Process. Technol. 2008, 207, 1–12; https://doi.org/10.1016/j.jmatprotec.2008.03.057.Suche in Google Scholar

7. Persaud-Sharma, D., McGoron, A. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25–39.10.4028/www.scientific.net/JBBTE.12.25Suche in Google Scholar

8. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Kristallogr. 2006, 221, 435–444; https://doi.org/10.1524/zkri.2006.221.5-7.435.Suche in Google Scholar

9. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 263–274; https://doi.org/10.1515/znb-2021-0049.Suche in Google Scholar

10. Hoffmann, R.-D., Pöttgen, R., Landrum, G. A., Dronskowski, R., Künnen, B., Kotzyba, G. Z. Anorg. Allg. Chem. 1999, 625, 789–798; https://doi.org/10.1002/(sici)1521-3749(199905)625:5<789::aid-zaac789>3.0.co;2-q.10.1002/(SICI)1521-3749(199905)625:5<789::AID-ZAAC789>3.0.CO;2-QSuche in Google Scholar

11. Hoffmann, R.-D., Rodewald, U. Ch., Pöttgen, R. Z. Naturforsch. 1999, 54b, 38–44; https://doi.org/10.1515/znb-1999-0110.Suche in Google Scholar

12. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Naturforsch. 2020, 75b, 903–911; https://doi.org/10.1515/znb-2020-0046.Suche in Google Scholar

13. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Suche in Google Scholar

14. Rodewald, U. Ch., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar

15. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar

16. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707–713; https://doi.org/10.1002/zaac.201200538.Suche in Google Scholar

17. Gulo, F., Köhler, J. Z. Anorg. Allg. Chem. 2015, 641, 557–560; https://doi.org/10.1002/zaac.201500026.Suche in Google Scholar

18. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar

19. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur. J. 2019, 25, 10735–10747; https://doi.org/10.1002/chem.201901867.Suche in Google Scholar PubMed

20. Hoffmann, R.-D., Pöttgen, R. Chem. Eur. J. 2001, 7, 382–387; https://doi.org/10.1002/1521-3765(20010119)7:2<382::aid-chem382>3.0.co;2-i.10.1002/1521-3765(20010119)7:2<382::AID-CHEM382>3.0.CO;2-ISuche in Google Scholar

21. Riecken, J. F., Pöttgen, R. Z. Naturforsch. 2005, 60b, 118–120; https://doi.org/10.1515/znb-2005-0118.Suche in Google Scholar

22. Marshall, M., Xing, L., Sobczak, Z., Blawat, J., Klimczuk, T., Jin, R., Xie, W. J. Mater. Sci. 2019, 54, 11127–11133; https://doi.org/10.1007/s10853-019-03681-8.Suche in Google Scholar

23. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

24. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar

25. Grin, Yu., Hiebl, K., Rogl, P., Godard, C. J. Alloys Compd. 1996, 239, 127–130; https://doi.org/10.1016/0925-8388(96)02228-1.Suche in Google Scholar

26. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

27. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285–294; https://doi.org/10.1515/zkri-2013-1717.Suche in Google Scholar

28. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

29. Kraft, R., Fickenscher, Th., Kotzyba, G., Hoffmann, R.-D., Pöttgen, R. Intermetallics 2003, 11, 111–118; https://doi.org/10.1016/s0966-9795(02)00189-9.Suche in Google Scholar

30. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174–181; https://doi.org/10.1006/jssc.1999.8236.Suche in Google Scholar

31. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183; https://doi.org/10.1107/s0108767384000416.Suche in Google Scholar

32. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Suche in Google Scholar

Received: 2022-10-24
Accepted: 2022-11-16
Published Online: 2022-11-23
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0059/html
Button zum nach oben scrollen