Abstract
The intermetallic barium compounds BaTMg2 (T = Pd, Ag, Pt, Au) and BaAuCd2 were synthesized by reactions of the elements in sealed tantalum ampoules in muffle furnaces. The five compounds crystallize with the orthorhombic MgCuAl2 type structure, space group Cmcm, with small differences in chemical bonding between the magnesium and cadmium series. All samples were characterized through their Guinier powder diffraction patterns. The structures of BaPdMg2 (a = 444.57(4), b = 1174.67(10), c = 827.58(7) pm, wR2 = 0.0460, 475 F2 values, 16 variables), BaAuMg2 (a = 450.27(6), b = 1183.94(16), c = 838.76(11) pm, wR2 = 0.0355, 473 F2 values, 16 variables) and BaAuCd2 (a = 463.31(5), b = 1112.79(12), c = 826.63(8) pm, wR2 = 0.0453, 469 F2 values, 16 variables) were refined from single crystal X-ray diffraction data. The large barium atoms push the [TMg2] respectively [AuCd2] substructures apart. This allows fast moisture attack and leads to fast hydrolyzes of the samples when they get in contact with water. The influence of the difference in electronegativity between magnesium and cadmium is reflected for the pair of compounds BaAuMg2 and BaAuCd2. The magnesium compound shows the higher auridic character, while the cadmium compound shows a tendency towards a three-dimensional cadmium substructure.
Acknowledgements
We thank Dipl.-Ing. J. Kösters for collecting the single crystal data sets.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Perlitz, H., Westgren, A. Ark. Kemi, Mineral. Geol. B 1943, 16, 1–5.Suche in Google Scholar
2. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491–494; https://doi.org/10.1515/znb-2005-0502.Suche in Google Scholar
3. Wang, S. C., Starink, M. J. Int. Mater. Rev. 2005, 50, 193–215; https://doi.org/10.1179/174328005x14357.Suche in Google Scholar
4. Styles, M. J., Hutchinson, C. R., Chen, Y., Deschamps, A., Bastow, T. J. Acta Mater. 2012, 60, 6940–6951; https://doi.org/10.1016/j.actamat.2012.08.044.Suche in Google Scholar
5. Zhu, C., Lv, K., Chen, B. J. Mater. Res. 2020, 35, 1582–1589; https://doi.org/10.1557/jmr.2020.74.Suche in Google Scholar
6. Toros, S., Ozturk, F., Kacar, I. J. Mater. Process. Technol. 2008, 207, 1–12; https://doi.org/10.1016/j.jmatprotec.2008.03.057.Suche in Google Scholar
7. Persaud-Sharma, D., McGoron, A. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25–39.10.4028/www.scientific.net/JBBTE.12.25Suche in Google Scholar
8. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Kristallogr. 2006, 221, 435–444; https://doi.org/10.1524/zkri.2006.221.5-7.435.Suche in Google Scholar
9. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 263–274; https://doi.org/10.1515/znb-2021-0049.Suche in Google Scholar
10. Hoffmann, R.-D., Pöttgen, R., Landrum, G. A., Dronskowski, R., Künnen, B., Kotzyba, G. Z. Anorg. Allg. Chem. 1999, 625, 789–798; https://doi.org/10.1002/(sici)1521-3749(199905)625:5<789::aid-zaac789>3.0.co;2-q.10.1002/(SICI)1521-3749(199905)625:5<789::AID-ZAAC789>3.0.CO;2-QSuche in Google Scholar
11. Hoffmann, R.-D., Rodewald, U. Ch., Pöttgen, R. Z. Naturforsch. 1999, 54b, 38–44; https://doi.org/10.1515/znb-1999-0110.Suche in Google Scholar
12. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Naturforsch. 2020, 75b, 903–911; https://doi.org/10.1515/znb-2020-0046.Suche in Google Scholar
13. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Suche in Google Scholar
14. Rodewald, U. Ch., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar
15. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar
16. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707–713; https://doi.org/10.1002/zaac.201200538.Suche in Google Scholar
17. Gulo, F., Köhler, J. Z. Anorg. Allg. Chem. 2015, 641, 557–560; https://doi.org/10.1002/zaac.201500026.Suche in Google Scholar
18. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar
19. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur. J. 2019, 25, 10735–10747; https://doi.org/10.1002/chem.201901867.Suche in Google Scholar PubMed
20. Hoffmann, R.-D., Pöttgen, R. Chem. Eur. J. 2001, 7, 382–387; https://doi.org/10.1002/1521-3765(20010119)7:2<382::aid-chem382>3.0.co;2-i.10.1002/1521-3765(20010119)7:2<382::AID-CHEM382>3.0.CO;2-ISuche in Google Scholar
21. Riecken, J. F., Pöttgen, R. Z. Naturforsch. 2005, 60b, 118–120; https://doi.org/10.1515/znb-2005-0118.Suche in Google Scholar
22. Marshall, M., Xing, L., Sobczak, Z., Blawat, J., Klimczuk, T., Jin, R., Xie, W. J. Mater. Sci. 2019, 54, 11127–11133; https://doi.org/10.1007/s10853-019-03681-8.Suche in Google Scholar
23. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
24. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
25. Grin, Yu., Hiebl, K., Rogl, P., Godard, C. J. Alloys Compd. 1996, 239, 127–130; https://doi.org/10.1016/0925-8388(96)02228-1.Suche in Google Scholar
26. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
27. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285–294; https://doi.org/10.1515/zkri-2013-1717.Suche in Google Scholar
28. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
29. Kraft, R., Fickenscher, Th., Kotzyba, G., Hoffmann, R.-D., Pöttgen, R. Intermetallics 2003, 11, 111–118; https://doi.org/10.1016/s0966-9795(02)00189-9.Suche in Google Scholar
30. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174–181; https://doi.org/10.1006/jssc.1999.8236.Suche in Google Scholar
31. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183; https://doi.org/10.1107/s0108767384000416.Suche in Google Scholar
32. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- A contribution to the perrhenate crystal chemistry: the crystal structures of new CdTh[MoO4]3-type compounds
- Mixed-valent 1:1 oxidotellurates(IV/VI) of Na, K and Rb: superstructure and three-dimensional disorder
- Structure and properties of phases from solid solutions YTIn1−x Al x (T = Ni and Cu)
- Halide-sodalites: thermal behavior at low temperatures and local deviations from the average structure
- Structural study of ceramic samples of the PbTiO3–BaTiO3–BaZrO3 system with a high PbTiO3 content studied by the Rietveld method
- A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions
- Magnesium and barium in two substructures: BaTMg2 (T = Pd, Ag, Pt, Au) and the isotypic cadmium compound BaAuCd2 with MgCuAl2 type structure
- Organic and Metalorganic Crystal Structures (Original Paper)
- Synthesis, structure, and photocatalytic properties of a two-dimensional uranyl organic framework
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- A contribution to the perrhenate crystal chemistry: the crystal structures of new CdTh[MoO4]3-type compounds
- Mixed-valent 1:1 oxidotellurates(IV/VI) of Na, K and Rb: superstructure and three-dimensional disorder
- Structure and properties of phases from solid solutions YTIn1−x Al x (T = Ni and Cu)
- Halide-sodalites: thermal behavior at low temperatures and local deviations from the average structure
- Structural study of ceramic samples of the PbTiO3–BaTiO3–BaZrO3 system with a high PbTiO3 content studied by the Rietveld method
- A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions
- Magnesium and barium in two substructures: BaTMg2 (T = Pd, Ag, Pt, Au) and the isotypic cadmium compound BaAuCd2 with MgCuAl2 type structure
- Organic and Metalorganic Crystal Structures (Original Paper)
- Synthesis, structure, and photocatalytic properties of a two-dimensional uranyl organic framework