Structure and properties of phases from solid solutions YTIn1−x Al x (T = Ni and Cu)
-
Myroslava Horiacha
, Galyna Nychyporuk
, Judith Bönnighausen , Frank Stegemann , Volodymyr Pavlyuk , Rainer Pöttgen und Vasyl’ Zaremba
Abstract
YNiIn and YCuIn form complete solid solutions YNiIn1−x
Al
x
and YCuIn1−x
Al
x
, which were characterized on the basis of X-ray powder diffraction. The ZrNiAl type crystal structures (space groups
Funding source: Deutsche Forschungsgemeinschaft
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was financially supported by the Deutsche Forschungsgemeinschaft. M.H. is indebted to DAAD for a research stipend.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chumalo, N., Demchuk, V., Nychyporuk, G., Zaremba, V. Investigation of interaction of the components in R2T2In1−xMx (R = La, Ce; T = Ni, Cu; M = Al, Sn; 0 ≤ x ≤ 1) systems. Visn. Lviv Univ., Ser. Chem. 2010, 51, 24–30.Suche in Google Scholar
2. Dominyuk, N., Nychyporuk, G., Muts, I., Pöttgen, R., Zaremba, V. Solubility of p-elements III and IV groups in the Gd2Cu2In compound. Visn. Lviv Univ., Ser. Chem. 2013, 54, 57–63.Suche in Google Scholar
3. Kharkhalis, A., Horiacha, M., Nychyporuk, G., Bednarchuk, O., Zaremba, V. Investigation of the components interaction in the RECu2In1−xAlx (RE = Y, La, Gd) systems. Visn. Lviv Univ., Ser. Chem. 2014, 55, 54–62.Suche in Google Scholar
4. Horiacha, M., Zinko, L., Nychyporuk, G., Serkiz, R., Zaremba, V. The GdTIn1−xMx (T = Ni, Cu; M = Al, Ga; 0 < x < 1) systems. Visn. Lviv Univ., Ser. Chem. 2017, 58, 77–85.Suche in Google Scholar
5. Horiacha, M., Savchuk, I., Nychyporuk, G., Serkiz, R., Zaremba, V. The YNiIn1−xMx (M = Al, Ga, Sb) systems. Visn. Lviv Univ., Ser. Chem. 2018, 59, 67–75; https://doi.org/10.30970/vch.5901.067.Suche in Google Scholar
6. Horiacha, M., Rinylo, N., Nychyporuk, G., Serkiz, R., Pöttgen, R., Zaremba, V. The interaction of the components in the YCuIn1−xMx (M = Al, Ga) systems. Ukr. Chem. J. 2018, 84, 31–37.10.30970/vch.5901.067Suche in Google Scholar
7. Zaremba, N., Nychyporuk, G., Schepilov, Yu., Panakhyd, O., Muts, I., Hlukhyy, V., Pavlyuk, V. The CeNiIn1−xMx (M = Al, Ga) systems at 873 K. Ukr. Chem. J. 2019, 84, 76–84.Suche in Google Scholar
8. Zaremba, N., Nychyporuk, G., Schepilov, Yu., Serkiz, R., Hlukhyy, V., Pavlyuk, V. The interaction of the components in the CeNiIn1−xMx (M = Ge, Sb) systems. Visn. Lviv Univ., Ser. Chem. 2019, 60, 82–90; https://doi.org/10.30970/vch.6001.082.Suche in Google Scholar
9. Klicpera, M., Javorský, P., Šantava, E. Magnetic phase transitions in TbNi(Al,In) compounds. Acta Phys. Pol., A 2010, 118, 881–883; https://doi.org/10.12693/aphyspola.118.881.Suche in Google Scholar
10. Godnek, Ł., Żukowski, J., Bałanda, M., Kaczorowski, D., Szytuła, A. Magnetism and electronic structures of hexagonal 1:1:1 rare earth-based intermetallic compounds. Mater. Sci. 2008, 26, 815–820.Suche in Google Scholar
11. Gupta, S., Suresh, K. G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Suche in Google Scholar
12. Brück, E., De Boer, F. R., Nozarh, P., Sechovsky, V., Havela, L., Buschow, K. H. J., Andreev, A. V. Influence of Y, Fe and Co substitutions on electronic properties of UNiAl. Physica B 1990, 163, 379–381.10.1016/0921-4526(90)90217-ISuche in Google Scholar
13. Rayaprol, S., Heying, B., Pöttgen, R. The solid solution CeAuIn1−xMgx – structure, magnetic properties and specific heat data. Z. Naturforsch. 2006, 61b, 495–502; https://doi.org/10.1515/znb-2006-0501.Suche in Google Scholar
14. Ehlers, G., Ahlert, D., Ritter, C., Miekeley, W., Maletta, H. Anomalous transition from antiferromagnetic to ferromagnetic order in the pseudoternary series TbNi1−xCuxAl. Europhys. Lett. 1997, 37, 269–274; https://doi.org/10.1209/epl/i1997-00142-5.Suche in Google Scholar
15. Zarzycki, A., Szytuła, A. Magnetic properties of Tb1−xYxNiIn system. Acta Phys. Pol., A 2012, 122, 382–383; https://doi.org/10.12693/aphyspola.122.382.Suche in Google Scholar
16. Bałanda, M., Penc, B., Baran, S., Jaworska-Golab, T., Arulraj, A., Szytuła, A. Magnetic properties of TbNi1−xAuxIn compounds. Acta Phys. Pol., A 2009, 115, 174–177.10.12693/APhysPolA.115.174Suche in Google Scholar
17. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. W. Ternary compounds with the Fe2P-type structure. Trans. Metall. Soc. AIME 1968, 242, 2075–2080.Suche in Google Scholar
18. Ferro, R., Marazza, R., Rambaldi, G. Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium. Z. Metallkd. 1974, 65, 37–39; https://doi.org/10.1515/ijmr-1974-650106.Suche in Google Scholar
19. Krachan, T., Stelmakhovych, B. M., Kuz’ma, Y. B. The Y-Cu-Al system. J. Alloys Compd. 2003, 349, 134–139; https://doi.org/10.1016/s0925-8388(02)00873-3.Suche in Google Scholar
20. Sysa, L. V., Zaremba, V. I., Kalychak, Y. M., Baranyak, V. M. New ternary compounds with indium, rare-earth and 3d metals with MgCu4Sn and ZrNiAl type structure. Visn. Lviv. Derzh. Univ., Ser. Khim. 1988, 29, 32–34.Suche in Google Scholar
21. Pöttgen, R., Gulden, T., Simon, A. Miniaturisierte Lichtbogenapparatur für den Laborbedarf. GIT Labor-Fachz. 1999, 43, 133–136.Suche in Google Scholar
22. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69; https://doi.org/10.1016/0921-4526(93)90108-i.Suche in Google Scholar
23. Kraus, W., Nolze, G. Powder Cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303; https://doi.org/10.1107/s0021889895014920.Suche in Google Scholar
24. Krypyakevych, P. I., Markiv, V. Y., Mel’nyk, E. V. The crystal structure of the compounds ZrNiAl, ZrCuGa and their analogue. Dopov. Akad. Navuk URSR, Ser. A 1967, 750–753.Suche in Google Scholar
25. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. The intermetallic zirconium compounds ZrNiAl, ZrRhSn, and ZrPtGa – structural distortions and metal-metal bonding in Fe2P related compounds. Z. Naturforsch. 1999, 54b, 45; https://doi.org/10.1515/znb-1999-0111.Suche in Google Scholar
26. Palatinus, L. The charge-flipping algorithm in crystallography. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s2052519212051366.Suche in Google Scholar
27. Palatinus, L., Chapuis, G. Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
28. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
29. Flack, H. D., Bernadinelli, G. Absolute structure and absolute configuration. Acta Crystallogr. A 1999, 55, 908–915; https://doi.org/10.1107/s0108767399004262.Suche in Google Scholar PubMed
30. Flack, H. D., Bernadinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. J. Appl. Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Suche in Google Scholar
31. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B 2013, 69, 249–259; https://doi.org/10.1107/s2052519213010014.Suche in Google Scholar PubMed PubMed Central
32. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Suche in Google Scholar
33. Corel Corporation. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), 2017.Suche in Google Scholar
34. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Suche in Google Scholar
35. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX – standardized data and crystal chemical characterization of inorganic structure types. In Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Suche in Google Scholar
36. Zumdick, M. F., Pöttgen, R. Determination of the superstructures for the stannides ZrIrSn, HfCoSn, and HfRhSn. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Suche in Google Scholar
37. Pöttgen, R., Chevalier, B. Cerium intermetallics with ZrNiAl-type structure – a review. Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Suche in Google Scholar
38. Oesterreicher, H. Structural and magnetic studies on rare-earth compounds RNiAl and RCuAl. J. Less-Common Met. 1973, 30, 225–236; https://doi.org/10.1016/0022-5088(73)90109-4.Suche in Google Scholar
39. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Suche in Google Scholar
40. Andersen, O. K., Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 1984, 53, 2571–2574; https://doi.org/10.1103/physrevlett.53.2571.Suche in Google Scholar
41. Andersen, O. K., Jepsen, O., Glötzel, D. In Highlights of Condensed Matter Theory; Bassani, F., Fumi, F., Tosi, M. P., Eds. North-Holland Publishing: New York, 1985.Suche in Google Scholar
42. Andersen, O. K., Pawlowska, Z., Jepsen, O. Illustration of the linear-muffin-tin-orbital tight-binding representation: compact orbitals and charge density in Si. Phys. Rev. B 1986, 34, 5253–5269; https://doi.org/10.1103/physrevb.34.5253.Suche in Google Scholar PubMed
43. Barth, U., von Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Suche in Google Scholar
44. Shtender, V. V., Pavlyuk, V. V., Dmytriv, G. S., Nitek, W., Łasocha, W., Cichowicz, G., Cyrański, M. K., Paul-Boncour, V., Zavaliy, I. Y. Synthesis and crystal structure of new compounds from the Y–Mg–Ni system. Z. Kristallogr. 2019, 234, 19–32; https://doi.org/10.1515/zkri-2018-2107.Suche in Google Scholar
45. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A., Fadda, G. Synthesis and crystallochemical characterisation of the intermetallic phases La(AgxMg1−x)12 (0.11 ≤ x ≤ 0.21), LaAg4+xMg2−x (–0.15 ≤ x ≤ 1.05) and LaAg2+xMg2−x (0 < x ≤ 0.45). Eur. J. Inorg. Chem. 2012, 4811–4821; https://doi.org/10.1002/ejic.201200700.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0052).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- A contribution to the perrhenate crystal chemistry: the crystal structures of new CdTh[MoO4]3-type compounds
- Mixed-valent 1:1 oxidotellurates(IV/VI) of Na, K and Rb: superstructure and three-dimensional disorder
- Structure and properties of phases from solid solutions YTIn1−x Al x (T = Ni and Cu)
- Halide-sodalites: thermal behavior at low temperatures and local deviations from the average structure
- Structural study of ceramic samples of the PbTiO3–BaTiO3–BaZrO3 system with a high PbTiO3 content studied by the Rietveld method
- A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions
- Magnesium and barium in two substructures: BaTMg2 (T = Pd, Ag, Pt, Au) and the isotypic cadmium compound BaAuCd2 with MgCuAl2 type structure
- Organic and Metalorganic Crystal Structures (Original Paper)
- Synthesis, structure, and photocatalytic properties of a two-dimensional uranyl organic framework
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- A contribution to the perrhenate crystal chemistry: the crystal structures of new CdTh[MoO4]3-type compounds
- Mixed-valent 1:1 oxidotellurates(IV/VI) of Na, K and Rb: superstructure and three-dimensional disorder
- Structure and properties of phases from solid solutions YTIn1−x Al x (T = Ni and Cu)
- Halide-sodalites: thermal behavior at low temperatures and local deviations from the average structure
- Structural study of ceramic samples of the PbTiO3–BaTiO3–BaZrO3 system with a high PbTiO3 content studied by the Rietveld method
- A novel crystallographic location of rattling atoms in filled Eu x Co4Sb12 skutterudites prepared under high-pressure conditions
- Magnesium and barium in two substructures: BaTMg2 (T = Pd, Ag, Pt, Au) and the isotypic cadmium compound BaAuCd2 with MgCuAl2 type structure
- Organic and Metalorganic Crystal Structures (Original Paper)
- Synthesis, structure, and photocatalytic properties of a two-dimensional uranyl organic framework