Abstract
Triclopyr ethyl ester (1) has been co-synthesized through one-pot solvothermal reaction and the crystal structure has been determined by single crystal X-ray structure analysis. The compound C18H16Cl6N2O6 crystallizes in the monoclinic crystal system, P21/c space group with unit-cell parameters: a = 4.9615(2) Å, b = 30.9297(14) Å, c = 15.9155(10) Å, β = 91.466(4)° and Z = 4. Each unit cell is composed of two discrete, similar but reversely arranged triclopyr ethyl ester organic molecules. In the 3D packing plot, 1 is further assembled into a network structure via rich Cl⋯Cl halogen bond interactions. In addition, the crystal structure, the flexible conformation of phenoxy methylene group of 1 has been carefully compared and discussed with those of triclopyr acid.
Funding source: Key Scientific Research Projects in Colleges and Universities of Henan Province http://dx.doi.org/10.13039/501100013066
Award Identifier / Grant number: 21A150036
Funding source: Science and Technology Innovation Team in Colleges and Universities of Henan Province http://dx.doi.org/10.13039/501100010950
Award Identifier / Grant number: 21IRTSTHN004
-
Author contributions: Jun-Xia Li: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Writing – review & editing. Lin-Yuan Xiong: Writing draft. Xiao-Jie Xu: Formal analysis, Software, Data curation. Chang Liu: Software, editing. Zheng-Guo Wang: Validation, Supervision, Review and editing.
-
Research funding: This work was supported by the key scientific research projects in colleges and universities of Henan Province (No. 21A150036), and the support plan for science and technology innovation team in colleges and universities of Henan Province (No. 21IRTSTHN004).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
-
Availability of data and material: CCDC 2094156 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
-
Code availability: Not applicable.
References
1. Cho, S., Kim, J., Jeon, Y., Kim, T. H. Crystal structure of triclopyr. Acta Crystallogr. 2014, E70, o940; https://doi.org/10.1107/S160053681401681X.Suche in Google Scholar PubMed PubMed Central
2. Anésio, A. H. C., Santos, M. V., Silveira, R. R., Ferreira, E. A., Santos, J. B. D., Silva, L. D. D. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops. Ann. Acad. Bras. Ciênc. 2018, 90, 1717–1732; https://doi.org/10.1590/0001-3765201820170134.Suche in Google Scholar PubMed
3. Gibson, D. J., Shupert, L. A., Liu, X. Do no harm: efficacy of a single herbicide application to control an invasive shrub while minimizing collateral damage to native species. Plants 2019, 8, 426; https://doi.org/10.3390/plants8100426.Suche in Google Scholar PubMed PubMed Central
4. Turner, M. A., Gulsby, W. D., Harper, C. A. Mixture of triclopyr and imazapyr more effective than triclopyr alone for hardwood forest stand improvement. For. Sci. 2021, 67, 43–48; https://doi.org/10.1093/forsci/fxaa039.Suche in Google Scholar
5. Stern, R. A., Stern, D., Harpaz, M., Gazit, S. Applications of 2,4,5-TP, 3,5,6-TPA, and combinations thereof increase lychee fruit size and yield. Hortscience 2000, 35, 661–664; https://doi.org/10.21273/HORTSCI.35.4.661.Suche in Google Scholar
6. Stern, A. R., Ben-Arie, R. Pre-harvest drop control of ‘Red Delicious’ and ‘Jonathan’ apple (Malus domestica) as affected by the synthetic auxin 3,5,6-TPA. J. Hortic. Sci. Biotechnol. 2006, 81, 943–948; https://doi.org/10.1080/14620316.2006.11512180.Suche in Google Scholar
7. Barlow, S. M., Terry, C., Gehen, S., Corvaro, M. Developmental toxicity studies on triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rabbit. Food Chem. Toxicol. 2022, 161, 112845; https://doi.org/10.1016/j.fct.2022.112845.Suche in Google Scholar PubMed
8. Barlow, S. M., Terry, C., Gehen, S., Corvaro, M. Reproductive and developmental evaluations of triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rat. Food Chem. Toxicol. 2022, 161, 112806; https://doi.org/10.1016/j.fct.2021.112806.Suche in Google Scholar PubMed
9. Maddila, S., Rana, S., Pagadala, R., Maddila, S. N., Vasam, C., Jonnalagadda, S. B. Ozone-driven photocatalyzed degradation and mineralization of pesticide, triclopyr by Au/TiO2. J. Environ. Sci. Heal. B 2015, 50, 571–583; https://doi.org/10.1080/03601234.2015.1028835.Suche in Google Scholar PubMed
10. Zhu, J. W., Zhao, Y., Ruan, H. H. Isolation and characterization of a triclopyr degrading bacterium. Basillus mycoides TR-9. Fresenius Environ. Bull. 2017, 26, 3639–3643.Suche in Google Scholar
11. Baglieri, A., Negre, M., Trotta, F., Bracco, P., Gennari, M. Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr. J. Environ. Sci. Heal. B 2013, 48, 784–792; https://doi.org/10.1080/03601234.2013.780943.Suche in Google Scholar PubMed
12. Pozdnyakov, I. P., Snytnikova, O. A., Yanshole, V. V., Fedunov, R. G., Grivin, V. P., Plyusnin, V. F. Direct UV photodegradation of herbicide triclopyr in aqueous solutions: a mechanistic study. Chemosphere 2022, 293, 133573; https://doi.org/10.1016/j.chemosphere.2022.133573.Suche in Google Scholar PubMed
13. Tayeb, M. A., Ismail, B. S., Khairiatul-Mardiana, J. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil. Environ. Moint. Assess. 2017, 189, 551; https://doi.org/10.1007/s10661-017-6236-4.Suche in Google Scholar PubMed
14. Zhou, Z., Wang, Y., Peng, F., Meng, F., Zha, J., Ma, L., Du, Y., Peng, N., Ma, L., Zhang, Q., Gu, L., Yin, W., Gu, Z., Tan, C. Intercalation-activated layered MoO3 nanobelts as biodegradable Nanozymes for tumor-specific photo-enhanced catalytic therapy. Angew. Chem. Int. Ed. 2022, 61, e202115939; https://doi.org/10.1002/anie.202115939.Suche in Google Scholar PubMed
15. Li, J. X., Du, Z. X., Xiong, L. Y., Fu, L. L., Bo, W. B. Supramolecular isomerism in two nickel(II) coordination polymers constructed with the flexible 2-carboxyphenoxyacetate linker: syntheses, structure analyses and magnetic properties. J. Solid State Chem. 2021, 293, 121799; https://doi.org/10.1016/j.jssc.2020.121799.Suche in Google Scholar
16. Li, R. F., Zhang, H., Hong, M. Z., Shi, J. G., Liu, X. F., Feng, X. Two Co(II)/Ni(II) complexes based on nitrogenous heterocyclic ligand as high-performance electrocatalyst for hydrogen evolution reaction. Dalton Trans. 2022, 51, 3970–3976; https://doi.org/10.1039/D1DT03814A.Suche in Google Scholar PubMed
17. Hu, P., Xiao, F. P., Wu, Y. F., Yang, X. M., Li, N., Wang, H. K., Jia, J. F. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem. Eng. J. 2022, 443, 136257; https://doi.org/10.1016/j.cej.2022.136257.Suche in Google Scholar
18. Zhang, J., Li, J. Synthesis, structure and magnetic properties of a binuclear copper(II) complex constructed by a new coordination mode of the tetrachlorophthalate ligand. Z. Naturforsch. 2016, 71b, 45–49; https://doi.org/10.1515/znb-2015-0135.Suche in Google Scholar
19. Li, J. X., Du, Z. X. Zinc and cobalt complexes with (2-carboxyphenoxy) acetic acid ligand: syntheses, structures, fluorescent and magnetic properties. J. Coord. Chem. 2016, 69, 2563–2572; https://doi.org/10.1080/00958972.2016.1216106.Suche in Google Scholar
20. He, W., Zhou, Z., Han, Z., Li, S., Zhou, Z., Ma, L., Zang, S. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem. Int. Ed. 2021, 60, 8505–8509; https://doi.org/10.1002/anie.202100006.Suche in Google Scholar PubMed
21. Du, Z. X., Li, J. X., Liu, S. J., Wang, Z. Q., Pan, Q. J. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation. Z. Naturforsch. 2020, 75b, 567–575; https://doi.org/10.1515/znb-2020-0036.Suche in Google Scholar
22. Liang, Y. J., Feng, G., Zhang, X., Li, J. X., Jiang, Y. Bis(pyridyl) ancillary ligands and pyrazine sulfonic acid in the synthesis of two Ag(I) supramolecular structures and fluorescent properties of the latter. J. Struct. Chem. 2021, 62, 300–308; https://doi.org/10.1134/s0022476621020153.Suche in Google Scholar
23. Li, J. X., Du, Z. X., Feng, X. A new binuclear NiII complex with tetrafluorophthalate and 2,2′-bipyridine ligands: synthesis, crystal structure and magnetic properties. Z. Naturforsch. 2019, 74b, 833–838; https://doi.org/10.1515/znb-2019-0128.Suche in Google Scholar
24. Zheng, Z., Xu, P., Jiang, Y., Liang, Y. J., Li, J. X. “Soft-hard” strategy to construct a pyrazine sulfonic acid copper(II) supramolecular structure and a study of its fluorescent property. J. Struct. Chem. 2021, 62, 292–299; https://doi.org/10.1134/s0022476621020141.Suche in Google Scholar
25. Zhao, X., He, X., Hou, A., Cheng, C., Wang, X., Yue, Y., Wu, Z., Wu, H., Liu, B., Li, H., Shen, J., Tan, C., Zhou, Z., Ma, L. Growth of Cu2O nanoparticles on two-dimensional Zr-ferrocene-metal-organic framework nanosheets for photothermally enhanced chemodynamic antibacterial therapy. Inorg. Chem. 2022, 61, 9328–9338; https://doi.org/10.1021/acs.inorgchem.2c01091.Suche in Google Scholar PubMed
26. Li, R. F., Wang, M. Z., Liu, X. F., Feng, X. Near-infrared luminescence and magnetism of several lanthanide polymers by biphenyl carboxylic acid ligand. Inorg. Chim. Acta 2022, 539, 121029; https://doi.org/10.1016/j.ica.2022.121029.Suche in Google Scholar
27. Hu, H., Quan, J., Tan, Z., Fu, J. H., Liang, Y. J., Li, J. X. Synthesis and properties of dimercury(I) crystal network constructed with functionalized pyrazine sulfonate and nitrate linkers. Russ. J. Gen. Chem. 2021, 91, 910–914; https://doi.org/10.1134/S1070363221050224.Suche in Google Scholar
28. Hu, P., Xiao, F. P., Wang, H. K., Rogach, A. L. Dual-functional hosts derived from metal-organic frameworks reduce dissolution of polyselenides and inhibit dendrite growth in a sodium-selenium battery. Energy Storage Mater. 2022, 51, 249–258; https://doi.org/10.1016/j.ensm.2022.06.019.Suche in Google Scholar
29. Du, Z. X., Li, J. X. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties. Z. Naturforsch. 2020, 75b, 577–581; https://doi.org/10.1515/znb-2020-0042.Suche in Google Scholar
30. Li, J. X., Zhang, T., Chen, H. J., Du, Z. X. A (4,4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties. Z. Kristallogr. 2021, 236, 251–259; https://doi.org/10.1515/zkri-2021-2043.Suche in Google Scholar
31. Zhong, K. L. Bis(1,10-phenanthroline-κ2N,N’)(sulfato-κ2O,O’)cobalt(II) propane-1,3-diol solvate. Acta Crystallogr. 2010, E66, m247; https://doi.org/10.1107/S1600536810003478.Suche in Google Scholar PubMed PubMed Central
32. Li, J. X., Xia, Y. Q., Cheng, L. M., Feng, X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: structures, properties and hirshfeld surface analyses. J. Solid State Chem. 2022, 313, 123271; https://doi.org/10.1016/j.jssc.2022.123271.Suche in Google Scholar
33. Du, Z. X., Li, J. X. The synthesis, structure and magnetic properties of a mononuclear cobalt compound with dipyrimidine sulfane ligand derived from 2-thio-barbituric acid. Inorg. Chim. Acta 2015, 436, 159–162. https://doi.org/10.1016/j.ica.2015.07.036.Suche in Google Scholar
34. Liang, Y. J., Hu, D., Zhang, L., Jiang, Y., Li, J. X. The synthesis and properties of a sodium supramolecular crystal network constructed with functional pyrazine sulfonic acid. J. Struct. Chem. 2021, 62, 1801–1809. https://doi.org/10.1134/S0022476621110172.Suche in Google Scholar
35. Li, J. X., Zhang, Y. H., Du, Z. X., Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorg. Chim. Acta 2022, 530, 120697; https://doi.org/10.1016/j.ica.2021.120697.Suche in Google Scholar
36. Li, J. X., Du, Z. X., Wang, J., Feng, X. Two mononuclear zinc(II) complexes constructed by two types of phenoxyacetic acid ligands: syntheses, crystal structures and fluorescence properties. Z. Naturforsch. 2019, 74b, 839–845; https://doi.org/10.1515/znb-2019-0147.Suche in Google Scholar
37. Li, J. X., Du, Z. X. A binuclear cadmium(II) cluster based on π⋯π stacking and halogen⋯halogen interactions: synthesis, crystal analysis and fluorescent properties. J. Cluster Sci. 2020, 31, 507–511; https://doi.org/10.1007/s10876-019-01666-w.Suche in Google Scholar
38. Li, J. X., Du, Z. X., Zhang, L. L., Liu, D. L., Pan, Q. Y. Doubly mononuclear cocrystal and oxalato-bridged binuclear copper compounds containing flexible 2-((3,5,6-trichloropyridin-2-yl) oxy)acetate tectons: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 512, 119890; https://doi.org/10.1016/j.ica.2020.119890.Suche in Google Scholar
39. Li, J. X., Du, Z. X., Pan, Q. Y., Zhang, L. L., Liu, D. L. The first 3,5,6-trichloropyridine-2-oxyacetate bridged manganese coordination polymer with features of π⋯π stacking and halogen⋯halogen interactions: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 509, 119677; https://doi.org/10.1016/j.ica.2020.119677.Suche in Google Scholar
40. Du, Z. X., Li, J. X. Crystal structure of tetraaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy) acetato-κO)-nickel(II)—diaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy)acetato)-nickel(II), C28H24Cl12N4Ni2O18. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 881–883; https://doi.org/10.1515/ncrs-2020-0075.Suche in Google Scholar
41. Du, Z. X., Li, J. X., Bai, R. F. The crystal structure of catena-poly [(μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 55–56; https://doi.org/10.1515/ncrs-2019-0470.Suche in Google Scholar
42. Li, J. X., Du, Z. X. The crystal structure of catena-poly[(μ2-4,4′-dipyridine-κ2N,N′)-bis (3,5,6-trichloropyridine-2-oxyacetato-κO)-bis(ethanol-κO)nickel(II)], C28H26Cl6N4NiO8. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 887–890; https://doi.org/10.1515/ncrs-2020-0083.Suche in Google Scholar
43. Li, J. X., Du, Z. X., Bai, R. F. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato-κ2N,O) zinc(II) dihydrate, C14H16Br2N2O7Zn. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 63–65; https://doi.org/10.1515/ncrs-2019-0486.Suche in Google Scholar
44. Du, Z. X., Li, J. X., Bai, R. F. Crystal structure of catena-poly[μ2-4,4′-bipyridine-κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6. Z. Kristallogr. -New Cryst. Struct. 2020, 235, 15–17; https://doi.org/10.1515/ncrs-2019-0434.Suche in Google Scholar
45. CrysAlis Pro, Rigaku Oxford Diffraction; Yarnton: Oxfordshire, UK, 2016.Suche in Google Scholar
46. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/S0021889808042726.Suche in Google Scholar
47. Sheldrick, G. M. Shelxl – integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/S2053273314026370.Suche in Google Scholar PubMed PubMed Central
48. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central
49. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601; https://doi.org/10.1021/acs.chemrev.5b00484.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0047).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals
- Organic and Metalorganic Crystal Structures (Original Paper)
- The cluster structure of crystalline phases according to TGA/DTA and XPS data in isodimorphic substitution series [Cu x Ni(1−x){N(CH2PO3)3}]Na4·nH2O (x = 0 … 1)
- The synthesis, crystal structure and conformation analysis of triclopyr ethyl ester
- Inorganic Crystal Structures (Original Paper)
- Revisiting the structure of (±)-[Co(en)3]I3·H2O – X-ray crystallographic and second-Harmonic results
- Multiple strongly coupled antiferromagnetic spin S = 1/2 dimers in liroconite Cu2Al(As,P)O4(OH)4·4H2O
- Magnesium-rich intermetallic compounds RE3Ag4Mg12 (RE = Y, La–Nd, Sm–Dy, Yb) and AE3Ag4Mg12 (AE = Ca, Sr)
- Letters
- The relationship between ionic conductivity and structural characteristics of melt-grown KR3F10 (R = Tb, Dy, Ho, Y) single crystals
- New and refined bond valence parameters for Te4+–F−, Te4+–S2− and Te4+–Se2− ion pairs
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals
- Organic and Metalorganic Crystal Structures (Original Paper)
- The cluster structure of crystalline phases according to TGA/DTA and XPS data in isodimorphic substitution series [Cu x Ni(1−x){N(CH2PO3)3}]Na4·nH2O (x = 0 … 1)
- The synthesis, crystal structure and conformation analysis of triclopyr ethyl ester
- Inorganic Crystal Structures (Original Paper)
- Revisiting the structure of (±)-[Co(en)3]I3·H2O – X-ray crystallographic and second-Harmonic results
- Multiple strongly coupled antiferromagnetic spin S = 1/2 dimers in liroconite Cu2Al(As,P)O4(OH)4·4H2O
- Magnesium-rich intermetallic compounds RE3Ag4Mg12 (RE = Y, La–Nd, Sm–Dy, Yb) and AE3Ag4Mg12 (AE = Ca, Sr)
- Letters
- The relationship between ionic conductivity and structural characteristics of melt-grown KR3F10 (R = Tb, Dy, Ho, Y) single crystals
- New and refined bond valence parameters for Te4+–F−, Te4+–S2− and Te4+–Se2− ion pairs