Home A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals
Article
Licensed
Unlicensed Requires Authentication

A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals

  • Edward R. T. Tiekink EMAIL logo
Published/Copyright: August 2, 2022

Abstract

A survey of the crystallographic literature of metal-organic crystal structures for the presence of C–I···π(arene) interactions where the iodide atom occupies a position close to plumb to the ring centroid, corresponding to a delocalised interaction, and is within the assumed sum of the van der Waals radii, i.e. 3.88 Å, has been undertaken. The majority of the 26 identified examples feature supramolecular chains of varying topology whereby C–I···π(arene) contacts are readily identified and apparently operating independently of other obvious supramolecular synthons. The next most prevalent supramolecular aggregate was zero-dimensional, containing up to a maximum of three molecules. While there were three examples of two-dimensional arrays among a series of isostructural crystal structures, no examples of three-dimensional structures largely sustained by C–I···π(arene) interactions were noted. This distribution of supramolecular aggregation patterns matched that noted for all-organic systems. In terms of the overall adoption rate, delocalised C–I···π(arene) interactions were found in 3% of crystals of metal-organic species where they could form, a percentage lower than 4% noted for all-organic crystals.


Corresponding author: Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia, E-mail:

Funding source: Sunway University

Award Identifier / Grant number: GRTIN-RRO-56-2022

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. GRTIN-RRO-56-2022.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Pepinsky, R. Crystal engineering – new concept in crystallography. Phys. Rev. 1955, 100, 971.Search in Google Scholar

2. Schmidt, G. M. J. Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647–678.10.1351/pac197127040647Search in Google Scholar

3. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356.10.1002/anie.200700534Search in Google Scholar PubMed

4. Tiekink, E. R. T. Molecular crystals by design? Chem. Commun. 2014, 50, 11079–11082.10.1039/C4CC04972ASearch in Google Scholar PubMed

5. Aakeröy, C. B., Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 1993, 22, 397–407.10.1039/CS9932200397Search in Google Scholar

6. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

7. Desiraju, G. R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 2002, 35, 565–573.10.1021/ar010054tSearch in Google Scholar

8. Colin, M. M., Gaultier de Claubry, H. Sur le combinaisons de l’iode avec les substances végétales et animales. Ann. Chim. 1814, 90, 87–100.Search in Google Scholar

9. Guthrie, F. On the iodide of iodammonium. J. Chem. Soc. 1863, 16, 239–244.10.1039/JS8631600239Search in Google Scholar

10. Hassel, O., Hvoslef, J. The structure of bromine 1,4-dioxanate. Acta Chem. Scand. 1954, 8, 873.10.3891/acta.chem.scand.08-0873Search in Google Scholar

11. Lommerse, J. P. M., Stone, A. J., Taylor, R., Allen, F. H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 1996, 118, 3108–3116.10.1021/ja953281xSearch in Google Scholar

12. Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395.10.1021/ar0400995Search in Google Scholar

13. Mukherjee, A., Tothadi, S., Desiraju, G. R. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc. Chem. Res. 2014, 47, 2514–2524.10.1021/ar5001555Search in Google Scholar PubMed

14. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601.10.1021/acs.chemrev.5b00484Search in Google Scholar PubMed PubMed Central

15. Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 2004, 6, 130–156.10.1039/b313104aSearch in Google Scholar

16. Nishio, M., Umezawa, Y., Fantini, J., Weiss, M. S., Chakrabarti, P. CH–π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys. 2014, 16, 12648–12683.10.1039/C4CP00099DSearch in Google Scholar PubMed

17. Voth Regier, A. R., Ho, P. S. The role of halogen bonding in inhibitor recognition and binding by protein kinases. Curr. Top. Med. Chem. 2007, 7, 1336–1348.10.2174/156802607781696846Search in Google Scholar PubMed

18. Matter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M., Wehner, V. Evidence for C–Cl/C–Br···π interactions as an important contribution to protein–ligand binding affinity. Angew. Chem. Int. Ed. 2009, 48, 2911–2916.10.1002/anie.200806219Search in Google Scholar PubMed

19. Costa, P. J., Nunes, R., Vila-Viçosa, D. Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin. Drug Discov. 2019, 14, 805–820.10.1080/17460441.2019.1619692Search in Google Scholar PubMed

20. Naskar, S., Moi, R., Das, I., Biradha, K. Halogen···halogen and halogen···π interactions enabled reversible photo-oligomerization of conjugated dienones: visible light triggered single-crystal-to-single-crystal transformation. Angew. Chem. Int. Ed. 2022, 61, e202204141.10.1002/anie.202204141Search in Google Scholar

21. Murray, J. S., Lane, P., Clark, T., Politzer, P. J. Sigma-hole bonding: molecules containing group VI atoms. Mol. Model. 2007, 13, 1033–1038.10.1007/s00894-007-0225-4Search in Google Scholar PubMed

22. Murray, J. S., Politzer, P. Interaction and polarization energy relationships in σ-hole and π-hole bonding. Crystals 2020, 10, 76.10.3390/cryst10020076Search in Google Scholar

23. Shishkin, O. V. Evaluation of true energy of halogen bonding in the crystals of halogen derivatives of trityl alcohol. Chem. Phys. Lett. 2008, 458, 96–100.10.1016/j.cplett.2008.04.106Search in Google Scholar

24. Schollmeyer, D., Shishkin, O. V., Rühl, T., Vysotsky, M. O. OH–π and halogen–π interactions as driving forces in the crystal organisations of tri-bromo and tri-iodo trityl alcohols. CrystEngComm 2008, 10, 715–723.10.1039/b716442dSearch in Google Scholar

25. Cao, J., Yan, X., He, W., Li, X., Li, Z., Mo, Y., Liu, M., Jiang, Y.-B. C–I···π halogen bonding driven supramolecular helix of bilateral N-amidothioureas bearing β-Turns. J. Am. Chem. Soc. 2017, 139, 6605–6610.10.1021/jacs.6b13171Search in Google Scholar PubMed

26. Tiekink, E. R. T. Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 2017, 345, 209–228.10.1016/j.ccr.2017.01.009Search in Google Scholar

27. Zukerman-Schpector, J., Otero-de-la-Roza, A., Luaña, V., Tiekink, E. R. T. Supramolecular architectures based on As(lone pair)···π(aryl) interactions. Chem. Commun. 2011, 47, 7608–7610.10.1039/c1cc11412cSearch in Google Scholar PubMed

28. Zukerman-Schpector, J., Haiduc, I., Tiekink, E. R. T. The metal–carbonyl···π(aryl) interaction as a supramolecular synthon for the stabilisation of transition metal carbonyl crystal structures. Chem. Commun. 2011, 47, 12682–12684.10.1039/c1cc15579bSearch in Google Scholar PubMed

29. Caracelli, I., Zukerman-Schpector, J., Tiekink, E. R. T. Supramolecular aggregation patterns based on the bio-inspired Se(lone pair)···π(aryl) synthon. Coord. Chem. Rev. 2012, 256, 412–438.10.1016/j.ccr.2011.10.021Search in Google Scholar

30. Caracelli, I., Zukerman-Schpector, J., Haiduc, I., Tiekink, E. R. T. Main group metal lone-pair···π(arene) interactions: a new bonding mode for supramolecular associations. CrystEngComm 2016, 18, 6960–6978.10.1039/C6CE01460GSearch in Google Scholar

31. Tiekink, E. R. T., Zukerman-Schpector, J. Emerging supramolecular synthons: C–H···π(chelate) interactions in metal bis(1,1-dithiolates). Chem. Commun. 2011, 47, 6623–6625.10.1039/c1cc11173fSearch in Google Scholar PubMed

32. Tan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A., Tiekink, E. R. T. Persistence of C–H···π(chelate ring) interactions in the crystal structures of Pd(S2COR)2. The utility of Pd(S2COR)2 as precursors for palladium sulphide materials. CrystEngComm 2016, 18, 1105–1117.10.1039/C5CE02126JSearch in Google Scholar

33. Tan, S. L., Lee, S. M., Lo, K. M., Otero-de-la-Roza, A., Tiekink, E. R. T. Experimental and computational evidence for a stabilising C–Cl(lone-pair)···π(chelate-ring) interaction. CrystEngComm 2021, 23, 119–130.10.1039/D0CE01478HSearch in Google Scholar

34. Tiekink, E. R. T. The remarkable propensity for the formation of C–H⋯π(chelate ring) interactions in the crystals of the first-row transition metal dithiocarbamates and the supramolecular architectures they sustain. CrystEngComm 2020, 22, 7308–7333.10.1039/D0CE00289ESearch in Google Scholar

35. Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B., Zarić, S. D. Noncovalent bonding: stacking interactions of chelate rings of transition metal complexes. Coord. Chem. Rev. 2017, 345, 318–341.10.1016/j.ccr.2016.12.020Search in Google Scholar

36. Tiekink, E. R. T. Supramolecular architectures sustained by delocalised C–I···π(arene) interactions in molecular crystals and the propensity of their formation. CrystEngComm 2021, 23, 904–928.10.1039/D0CE01677BSearch in Google Scholar

37. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 380–388.10.1107/S0108768102003890Search in Google Scholar PubMed

38. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J., Taylor, R. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 389–397.10.1107/S0108768102003324Search in Google Scholar

39. Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451.10.1021/j100785a001Search in Google Scholar

40. Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896.10.1039/b003010oSearch in Google Scholar

41. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 1–11.10.1107/S2056989019016244Search in Google Scholar PubMed PubMed Central

42. Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany, 2006.Search in Google Scholar

43. Gama, S., Mendes, F., Marques, F., Santos, I. C., Fernanda Carvalho, M., Correia, I., Pessoa, J. C., Santos, I., Paulo, A. Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J. Inorg. Biochem. 2011, 105, 637–644.10.1016/j.jinorgbio.2011.01.013Search in Google Scholar PubMed

44. Gamekkanda, J. C., Sinha, A. S., Desper, J., Ðaković, M., Aakeröy, C. B. Crystals 2017, 7, 226.10.3390/cryst7070226Search in Google Scholar

45. Klein-Heβing, C., Blockhaus, T., Sünkel, K. Synthesis and characterization of perhalogenated triphenylphosphine-cymantrenes [(C5X5)Mn(CO)2(PPh3)] (X = F, Cl, Br) and [(C5HI4)Mn(CO)2(PPh3)]. J. Organomet. Chem. 2021, 943, 121833.10.1016/j.jorganchem.2021.121833Search in Google Scholar

46. Duffin, R. N., Blair, V. L., Kedzierski, L., Andrews, P. C. Development of new combination anti-leishmanial complexes: triphenyl Sb(V) mono-hydroxy mono-quinolinolates. J. Inorg. Biochem. 2021, 219, 111385.10.1016/j.jinorgbio.2021.111385Search in Google Scholar PubMed

47. Kim, Y.-E., Kim, J., Park, J. W., Park, K., Lee, Y. σ-Complexation as a strategy for designing copper-based light emitters. Chem. Commun. 2017, 53, 2858–2861.10.1039/C6CC10139ASearch in Google Scholar PubMed

48. Sun, W.-H., Yang, H., Li, Z., Li, Y. Vinyl polymerization of norbornene with neutral salicylaldiminato nickel(II) complexes. Organometallics 2003, 22, 3678–3683.10.1021/om030018tSearch in Google Scholar

49. Sivchik, V., Sarker, R. K., Liu, Z.-Y., Chung, K.-Y., Grachova, E. V., Karttunen, A. J., Chou, P.-T., Koshevoy, I. O. Improvement of the photophysical performance of platinum-cyclometalated complexes in halogen-bonded adducts. Chem. Eur. J. 2018, 24, 11475–11484.10.1002/chem.201802182Search in Google Scholar PubMed

50. Katlenok, E. A., Haukka, M., Levin, O. V., Frontera, A., Kukushkin, V. Yu. Supramolecular assembly of metal complexes by (aryl)I⋯dz[PtII] halogen bonds. Chem. Eur. J. 2020, 26, 7692–7701.10.1002/chem.202001196Search in Google Scholar PubMed

51. Lapadula, G., Judaš, N., Friščić, T., Jones, W. A three-component modular strategy to extend and link coordination complexes by using halogen bonds to O, S and π acceptors. Chem. Eur. J. 2010, 16, 7400–7403.10.1002/chem.201000049Search in Google Scholar PubMed

52. Ingner, F. J. L., Schmitt, A.-C., Orthaber, A., Gates, P. J., Pilarski, L. T. Mild and efficient synthesis of diverse organo-AuI-L complexes in green solvents. ChemSusChem 2020, 13, 2032–2037.10.1002/cssc.201903415Search in Google Scholar PubMed PubMed Central

53. August Ridenour, J., Schofield, M. H., Cahill, C. L. Structural and computational investigation of halogen bonding effects on spectroscopic properties within a series of halogenated uranyl benzoates. Cryst. Growth Des. 2020, 20, 1311–1318.10.1021/acs.cgd.9b01567Search in Google Scholar

54. Sharutin, V. Private Communication to the Cambridge Structural Database; Refcode AZOVIW, 2016.Search in Google Scholar

55. Nandi, G., Titi, H. M., Goldberg, I. Exploring supramolecular self-assembly of metalloporphyrin tectons by halogen bonding. 2. Cryst. Growth Des. 2014, 14, 3557–3566.10.1021/cg500491cSearch in Google Scholar

56. Muniappan, S., Lipstman, S., Goldberg, I. Rational design of supramolecular chirality in porphyrin assemblies: the halogen bond case. Chem. Commun. 2008, 1777–1779.10.1039/b719625cSearch in Google Scholar PubMed

57. Adonin, S. A., Petrov, M. A., Abramov, P. A., Novikov, A. S., Sokolov, M. N., Fedin, V. P. Halogen bonding in heteroleptic Cu(II)2‐iodobenzoates. Polyhedron 2019, 171, 312–316.10.1016/j.poly.2019.07.020Search in Google Scholar

58. Xie, J., Batten, S. R., Zou, Y., Ren, X. Observation of in situ ligand reactions during the assembly of crystalline Zn–S clusters. Cryst. Growth Des. 2011, 11, 16–20.10.1021/cg100926gSearch in Google Scholar

59. Bolitho, E. Private Communication to the Cambridge Structural Database; Refcode FACMEF, 2020.Search in Google Scholar

60. Mamane, V., Peluso, P., Aubert, E., Weiss, R., Wenger, E., Cossu, S., Pale, P. Disubstituted ferrocenyl iodo- and chalcogenoalkynes as chiral halogen and chalcogen bond donors. Organometallics 2020, 39, 3936–3950.10.1021/acs.organomet.0c00633Search in Google Scholar

61. Friedlein, F. K., Kromm, K., Hampel, F., Gladysz, J. A. Synthesis, structure, and reactivity of palladacycles that contain a chiral rhenium fragment in the backbone: new cyclometalation and catalyst design strategies. Chem. Eur. J. 2006, 12, 5267–5281.10.1002/chem.200501540Search in Google Scholar PubMed

62. Leung, A. C. W., Chong, J. H., Patrick, B. O., MacLachlan, M. J. Poly(salphenyleneethynylene)s: a new class of soluble, conjugated, metal-containing polymers. Macromolecules 2003, 36, 5051–5054.10.1021/ma034229lSearch in Google Scholar

63. Duchemin, C., Smits, G., Cramer, N. RhI, IrIII, and CoIII complexes with atropchiral biaryl cyclopentadienyl ligands: syntheses, structures, and catalytic activities. Organometallics 2019, 38, 3939–3947.10.1021/acs.organomet.9b00365Search in Google Scholar

64. Argazzi, R., Bergamini, P., Costa, E., Gee, V., Hogg, J. K., Martin, A., Orpen, A. G., Pringle, P. G. Anchimeric assistance by platinum(II) in the epimerizations of [PtX(CHXSiMe3)(R,R-chiraphos)]. Organometallics 1996, 15, 5591–5597.10.1021/om9605950Search in Google Scholar

65. Nimitsiriwat, N., Gibson, V. C., Marshall, E. L., Elsegood, M. R. J. Bidentate salicylaldiminato tin(II) complexes and their use as lactide polymerisation initiators. Dalton Trans. 2009, 3710–3715.10.1039/b812877dSearch in Google Scholar PubMed

66. Kobayashi, K., Kobayashi, N., Ikuta, M., Therrien, B., Sakamoto, S., Yamaguchi, K. Syntheses of hexakis(4-functionalized-phenyl)benzenes and hexakis[4-(4ʹ-functionalized- phenylethynyl)phenyl]benzenes directed to host molecules for guest-inclusion network. J. Org. Chem. 2005, 70, 749–752.10.1021/jo048521iSearch in Google Scholar PubMed

67. Gulevskaya, A. V., Lazarevich, R. Yu., Pozharskii, A. F. Electrophilic cyclizations of 2,3-dialkynylquinoxalines and 1,2-dialkynylbenzenes: a comparative study. Tetrahedron 2013, 69, 910–917.10.1016/j.tet.2012.10.098Search in Google Scholar

Received: 2022-06-04
Accepted: 2022-07-08
Published Online: 2022-08-02
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0038/html
Scroll to top button