Startseite The relationship between ionic conductivity and structural characteristics of melt-grown KR3F10 (R = Tb, Dy, Ho, Y) single crystals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The relationship between ionic conductivity and structural characteristics of melt-grown KR3F10 (R = Tb, Dy, Ho, Y) single crystals

  • Denis N. Karimov EMAIL logo , Irina I. Buchinskaya und Nikolay I. Sorokin
Veröffentlicht/Copyright: 26. August 2022

Abstract

The temperature dependences of the ionic electrical conductivity of fluorite-type (sp. gr. F m 3 m , Z = 8) KDy3F10 and KHo3F10 single crystals grown by the Bridgman technique have been studied by impedance spectroscopy for the first time. The correlation between the conductometric and structural characteristics of KR3F10 (R = Tb, Dy, Ho, Y) crystal family from the point of view of the observed size effect in the ionic conductivity is discussed. With decrease in the unit-cell volume V1F per fluorine atom in a series of crystals with R = Tb, Dy, Ho and Y, the activation energy Eσ of ion transfer decreases from 1.57 to 1.16 eV respectively and the fluorine-ion conductivity value increases from 3.0 × 10−5 to 4.4 × 10−4 S cm at 773 K, i.e. the nature of the conductivity change is linearly antibatic. This phenomenon can be useful for developing approaches and search strategies for new ionic conductors.


Corresponding author: Denis N. Karimov, Shubnikov Institute of Crystallography, Federal Scientific Research Centre «Crystallography and Photonics» of Russian Academy of Sciences, 59 Leninskiy Prospect, 119333, Moscow, Russia, E-mail:

Funding source: Ministry of Higher Education and Science of the Russian Federation

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the Ministry of Higher Education and Science of the Russian Federation within the State assignment of the Federal Scientific Research Centre «Crystallography and Photonics» of the Russian Academy of Sciences using the equipment of the Shared Research Center FSRC «Crystallography and Photonics» RAS.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Fedorov, P. P. Systems of alkali and rare-earth metal fluorides. Russ. J. Inorg. Chem. 1996, 44, 1703–1727.Suche in Google Scholar

2. Vedrine, A., Boutonnet, R., Sabatier, R., Cousseins, J. C. Les systemes RbF–SmF3 et CsF−SmF3. Etude des phases cubiques MLn3F10 (M = K, Rb; Ln = Lanthanide). Bull. Soc. Chim. Fr. 1975, 3−4, 445–448.Suche in Google Scholar

3. Greis, O., Haschke, J. M. Rare earth fluorides. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Eyring, L., Eds., Vol. 5. Elsevier: Amsterdam, 2005, pp. 387–460.10.1016/S0168-1273(82)05008-9Suche in Google Scholar

4. Denker, B., Shklovsky, E., Eds. Handbook of Solid-State Lasers: Materials, Systems and Applications; Woodhead Publishing Series in Electronic and Optical Materials; Elsevier: Amsterdam, 2013.Suche in Google Scholar

5. Kaminskii, A. A. Laser Crystals: Their Physics and Properties, 2nd ed.; Springer Berlin: Heidelberg, 1990.10.1007/978-3-540-70749-3Suche in Google Scholar

6. Vojna, D., Duda, M., Yasuhara, R., Slezák, O., Schlichting, W., Stevens, K., Chen, H., Lucianetti, A., Mocek, T. Verdet constant of potassium terbium fluoride crystal as a function of wavelength and temperature. Opt. Lett. 2020, 45, 1683–1686; https://doi.org/10.1364/OL.387911.Suche in Google Scholar PubMed

7. Karimov, D. N., Buchinskaya, I. I., Arkharova, N. A., Ivanova, A. G., Savelyev, A. G., Sorokin, N. I., Popov, P. P. Growth peculiarities and properties of KR3F10 (R = Y, Tb) single crystals. Crystals 2021, 11, 285; https://doi.org/10.3390/cryst11030285.Suche in Google Scholar

8. Pues, P., Baur, F., Schwung, S., Rytz, D., Pöttgen, R., Paulsen, Ch., Janka, O., Rendenbach, B., Johrendt, D., Jüstel, T. Temperature and time-dependent luminescence of single crystals of KTb3F10. J. Lumin. 2020, 227, 117523; https://doi.org/10.1016/j.jlumin.2020.117523.Suche in Google Scholar

9. Podberezskaya, N. V., Potapova, O. G., Borisov, S. V., Gatilov, Y. V. Crystal structure of KTb3F10 cubic packing of the [Tb6F32]14− polyanions. J. Struct. Chem. 1976, 17, 815–817; https://doi.org/10.1007/BF00746034.Suche in Google Scholar

10. Grzechnik, A., Nuss, J., Friese, K., Gesland, J.-Y., Jansen, M. Refinement of the crystal structure of potassium triyttrium decafluoride, KY3F10. Z. Kristallogr. NCS. 2002, 217, 460; https://doi.org/10.1524/ncrs.2002.217.1.460.Suche in Google Scholar

11. Bevan, D. J. M., Greis, O., Strähle, J. A new structural principle in anion-excess fluorite-related superlattices. Acta Crystallogr. A 1980, 36, 889–890; https://doi.org/10.1107/S0567739480001878.Suche in Google Scholar

12. Bevan, D. J. M., Strähle, J., Greis, O. The crystal structure of tveitite, an ordered yttrofluorite mineral. J. Solid State Chem. 1982, 44, 75–81; https://doi.org/10.1016/0022-4596(82)90402-9.Suche in Google Scholar

13. Golubev, A. M., Garashina, L. S., Zakalyukin, R. M., Sobolev, B. P., Herrero, P. Modeling of the structure of fluorite-type solid solutions M1−x(Y,Ln)xF2+x from matrix and rare-earth superclucters based on the KY3F10 structural type. Russ. J. Inorg. Chem. 2004, 49, 225–230.Suche in Google Scholar

14. Sorokin, N. I., Sobolev, B. P., Golubev, A. M. Structural mechanisms of superionic conductivity in M1−xRxF2+x single crystals. Crystallogr. Rep. 2014, 59, 238–247; https://doi.org/10.1134/S1063774514010155.Suche in Google Scholar

15. Sorokin, N. I., Karimov, D. N., Volchkov, I. S., Grigor’ev, Y. V., Sobolev, B. P. Fluorine-ionic conductivity of superi-onic conductorcrystals Na0.37Tb0.63F2.26. Crystallogr. Rep. 2019, 64, 626–630; https://doi.org/10.1134/S1063774519040229.Suche in Google Scholar

16. Sorokin, N. I., Bystrova, A. A., Krivandina, E. A., Fedorov, E. A., Sobolev, B. P. Anionic conductivity in Na0.5−x(R, R*)0.5+xF2+2x single crystals (R, R* = RE) with the defect fluorite-type structure. Crystallogr. Rep. 1999, 44, 128–132.Suche in Google Scholar

17. Toshmatov, A. D., Aukhadeev, F. L., Terpilovskii, D. N., Dudkin, V. A., Zhdanov, R. S., Yagudin, S. I. Sov. Phys. Solid State 1988, 30, 111–117.Suche in Google Scholar

18. Popov, P. A., Fedorov, P. P., Semashko, V. V., Korableva, S. L., Marisov, M. A., Gordeev, E. Yu., Reiterov, V. M., Osiko, V. V. Thermal conductivity of crystals formed by fluoritelike phases in MF-RF3 systems (M = Li, Na, and K, R = Rare Earth). Dokl. Phys. 2009, 54, 221–224; https://doi.org/10.1134/S1028335809050012.Suche in Google Scholar

19. Karimov, D. N., Buchinskaya, I. I. Growing KR3F10 (R = Tb–Er) crystals by the vertical directional crystallization method. I. Optimization of the melt composition for growing KTb3F10 and correction of the phase diagram of the KF–TbF3 system. Crystallogr. Rep. 2021, 66, 535–540; https://doi.org/10.1134/S1063774521030081.Suche in Google Scholar

20. Karimov, D. N., Buchinskaya, I. I., Popov, P. A., Koshelev, A. V., Samsonova, N. V. Growing KR3F10 (R = Tb–Er) crystals by the vertical directional crystallization method. II. Refining the character of melting, growing and some physical properties of KDy3F10 crystals. Crystallogr. Rep. 2021, 66, 968–972; https://doi.org/10.31857/S0023476121060175.Suche in Google Scholar

21. Ivanov-Shits, A. K., Sorokin, N. I., Fedorov, P. P., Sobolev, B. P. Conductivity of Sr1–xLaxF2+x solid solutions with compositions in the range 0.03≤ x ≤0.40. Sov. Phys. Solid State 1983, 25, 1007–1010.Suche in Google Scholar

22. Sorokin, N. I., Karimov, D. N. Crystallophysical model of ion transport in single-crystal Ba1–xLaxF2+x and Ca1–xYxF2+x superionic conductors. Phys. Solid State 2021, 63, 1821–1832; https://doi.org/10.1134/S106378342110036X.Suche in Google Scholar

23. Bollmann, W., Reimann, R. Concentration and mobility of interstitial fluorine ions in CaF2. Phys. Status Solidi (a) 1973, 16, 187–196; https://doi.org/10.1002/pssa.2210160120.Suche in Google Scholar

24. Bollmann, W., Gorlich, P., Hauk, W., Mothes, H. Ionic conduction of pure and doped CaF2 and SrF2 crystals. Phys. Status Solidi (a) 1970, 2, 157–170; https://doi.org/10.1002/pssa.19700020120.Suche in Google Scholar

25. Oberschmidt, J., Lazarus, D. Ionic conductivity, activation volumes, and frequency-dependent conductivity in crystals with the fluorite structure. Phys. Rev. B 1980, 21, 5823–5834; https://doi.org/10.1103/PhysRevB.21.5823.Suche in Google Scholar

26. Figueroa, D. R., Chadwick, A. V., Strange, J. H. NMR relaxation, ionic conductivity and the self-diffusion process in barium fluoride. J. Phys. C Solid State Phys. 1978, 11, 55–73; https://doi.org/10.1088/0022-3719/11/1/017.Suche in Google Scholar

27. Sorokin, N. I., Sobolev, B. P. The intrinsic fluorine-ion conductivity of crystalline matrices of fluoride superionics: BaF2 (fluorite type) and LaF3 (tysonite type). Phys. Solid State 2018, 60, 2450–2456; https://doi.org/10.1134/S1063783419010268.Suche in Google Scholar

28. Barsis, E., Taylor, A. F– vacancy conductivity in BaF2 crystals. J. Chem. Phys. 1968, 48, 4357–4361; https://doi.org/10.1063/1.1667999.Suche in Google Scholar

29. Sorokin, N. I. Ionic conductivity of binary fluorides of potassium and rare earth elements. Crystallogr. Rep. 2016, 61, 55–57; https://doi.org/10.1134/S1063774515060346.Suche in Google Scholar

30. Meyer, W., Neldel, N. Relation between the energy constant and the quantity constant in the conductivity-temperature formula of oxide semiconductors. Z. Techn. Phys. 1937, 18, 588–593.Suche in Google Scholar

31. Dyre, J. C. A phenomenological model for the Meyer–Neldel rule. J. Phys. C Solid State Phys. 1986, 19, 5655–5664; https://doi.org/10.1088/0022-3719/19/28/016.Suche in Google Scholar

32. Ivanov-Schitz, A. K., Murin, I. V. Solid State Ionics; SPb University Press: St. Petersburg, Russia, V. 2, 2010 [in Russian].Suche in Google Scholar

33. Chadwick, A. High-temperature transport in fluorites. Solid State Ionics 1983, 8, 209–220; https://doi.org/10.1016/0167-2738(83)90018-8.Suche in Google Scholar

Received: 2022-05-06
Accepted: 2022-08-10
Published Online: 2022-08-26
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0032/html
Button zum nach oben scrollen