Startseite A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals

  • Edward R. T. Tiekink EMAIL logo
Veröffentlicht/Copyright: 2. August 2022

Abstract

A survey of the crystallographic literature of metal-organic crystal structures for the presence of C–I···π(arene) interactions where the iodide atom occupies a position close to plumb to the ring centroid, corresponding to a delocalised interaction, and is within the assumed sum of the van der Waals radii, i.e. 3.88 Å, has been undertaken. The majority of the 26 identified examples feature supramolecular chains of varying topology whereby C–I···π(arene) contacts are readily identified and apparently operating independently of other obvious supramolecular synthons. The next most prevalent supramolecular aggregate was zero-dimensional, containing up to a maximum of three molecules. While there were three examples of two-dimensional arrays among a series of isostructural crystal structures, no examples of three-dimensional structures largely sustained by C–I···π(arene) interactions were noted. This distribution of supramolecular aggregation patterns matched that noted for all-organic systems. In terms of the overall adoption rate, delocalised C–I···π(arene) interactions were found in 3% of crystals of metal-organic species where they could form, a percentage lower than 4% noted for all-organic crystals.


Corresponding author: Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia, E-mail:

Funding source: Sunway University

Award Identifier / Grant number: GRTIN-RRO-56-2022

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. GRTIN-RRO-56-2022.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Pepinsky, R. Crystal engineering – new concept in crystallography. Phys. Rev. 1955, 100, 971.Suche in Google Scholar

2. Schmidt, G. M. J. Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647–678.10.1351/pac197127040647Suche in Google Scholar

3. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356.10.1002/anie.200700534Suche in Google Scholar PubMed

4. Tiekink, E. R. T. Molecular crystals by design? Chem. Commun. 2014, 50, 11079–11082.10.1039/C4CC04972ASuche in Google Scholar PubMed

5. Aakeröy, C. B., Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 1993, 22, 397–407.10.1039/CS9932200397Suche in Google Scholar

6. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar

7. Desiraju, G. R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 2002, 35, 565–573.10.1021/ar010054tSuche in Google Scholar

8. Colin, M. M., Gaultier de Claubry, H. Sur le combinaisons de l’iode avec les substances végétales et animales. Ann. Chim. 1814, 90, 87–100.Suche in Google Scholar

9. Guthrie, F. On the iodide of iodammonium. J. Chem. Soc. 1863, 16, 239–244.10.1039/JS8631600239Suche in Google Scholar

10. Hassel, O., Hvoslef, J. The structure of bromine 1,4-dioxanate. Acta Chem. Scand. 1954, 8, 873.10.3891/acta.chem.scand.08-0873Suche in Google Scholar

11. Lommerse, J. P. M., Stone, A. J., Taylor, R., Allen, F. H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 1996, 118, 3108–3116.10.1021/ja953281xSuche in Google Scholar

12. Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395.10.1021/ar0400995Suche in Google Scholar

13. Mukherjee, A., Tothadi, S., Desiraju, G. R. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc. Chem. Res. 2014, 47, 2514–2524.10.1021/ar5001555Suche in Google Scholar PubMed

14. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601.10.1021/acs.chemrev.5b00484Suche in Google Scholar PubMed PubMed Central

15. Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 2004, 6, 130–156.10.1039/b313104aSuche in Google Scholar

16. Nishio, M., Umezawa, Y., Fantini, J., Weiss, M. S., Chakrabarti, P. CH–π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys. 2014, 16, 12648–12683.10.1039/C4CP00099DSuche in Google Scholar PubMed

17. Voth Regier, A. R., Ho, P. S. The role of halogen bonding in inhibitor recognition and binding by protein kinases. Curr. Top. Med. Chem. 2007, 7, 1336–1348.10.2174/156802607781696846Suche in Google Scholar PubMed

18. Matter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M., Wehner, V. Evidence for C–Cl/C–Br···π interactions as an important contribution to protein–ligand binding affinity. Angew. Chem. Int. Ed. 2009, 48, 2911–2916.10.1002/anie.200806219Suche in Google Scholar PubMed

19. Costa, P. J., Nunes, R., Vila-Viçosa, D. Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin. Drug Discov. 2019, 14, 805–820.10.1080/17460441.2019.1619692Suche in Google Scholar PubMed

20. Naskar, S., Moi, R., Das, I., Biradha, K. Halogen···halogen and halogen···π interactions enabled reversible photo-oligomerization of conjugated dienones: visible light triggered single-crystal-to-single-crystal transformation. Angew. Chem. Int. Ed. 2022, 61, e202204141.10.1002/anie.202204141Suche in Google Scholar

21. Murray, J. S., Lane, P., Clark, T., Politzer, P. J. Sigma-hole bonding: molecules containing group VI atoms. Mol. Model. 2007, 13, 1033–1038.10.1007/s00894-007-0225-4Suche in Google Scholar PubMed

22. Murray, J. S., Politzer, P. Interaction and polarization energy relationships in σ-hole and π-hole bonding. Crystals 2020, 10, 76.10.3390/cryst10020076Suche in Google Scholar

23. Shishkin, O. V. Evaluation of true energy of halogen bonding in the crystals of halogen derivatives of trityl alcohol. Chem. Phys. Lett. 2008, 458, 96–100.10.1016/j.cplett.2008.04.106Suche in Google Scholar

24. Schollmeyer, D., Shishkin, O. V., Rühl, T., Vysotsky, M. O. OH–π and halogen–π interactions as driving forces in the crystal organisations of tri-bromo and tri-iodo trityl alcohols. CrystEngComm 2008, 10, 715–723.10.1039/b716442dSuche in Google Scholar

25. Cao, J., Yan, X., He, W., Li, X., Li, Z., Mo, Y., Liu, M., Jiang, Y.-B. C–I···π halogen bonding driven supramolecular helix of bilateral N-amidothioureas bearing β-Turns. J. Am. Chem. Soc. 2017, 139, 6605–6610.10.1021/jacs.6b13171Suche in Google Scholar PubMed

26. Tiekink, E. R. T. Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 2017, 345, 209–228.10.1016/j.ccr.2017.01.009Suche in Google Scholar

27. Zukerman-Schpector, J., Otero-de-la-Roza, A., Luaña, V., Tiekink, E. R. T. Supramolecular architectures based on As(lone pair)···π(aryl) interactions. Chem. Commun. 2011, 47, 7608–7610.10.1039/c1cc11412cSuche in Google Scholar PubMed

28. Zukerman-Schpector, J., Haiduc, I., Tiekink, E. R. T. The metal–carbonyl···π(aryl) interaction as a supramolecular synthon for the stabilisation of transition metal carbonyl crystal structures. Chem. Commun. 2011, 47, 12682–12684.10.1039/c1cc15579bSuche in Google Scholar PubMed

29. Caracelli, I., Zukerman-Schpector, J., Tiekink, E. R. T. Supramolecular aggregation patterns based on the bio-inspired Se(lone pair)···π(aryl) synthon. Coord. Chem. Rev. 2012, 256, 412–438.10.1016/j.ccr.2011.10.021Suche in Google Scholar

30. Caracelli, I., Zukerman-Schpector, J., Haiduc, I., Tiekink, E. R. T. Main group metal lone-pair···π(arene) interactions: a new bonding mode for supramolecular associations. CrystEngComm 2016, 18, 6960–6978.10.1039/C6CE01460GSuche in Google Scholar

31. Tiekink, E. R. T., Zukerman-Schpector, J. Emerging supramolecular synthons: C–H···π(chelate) interactions in metal bis(1,1-dithiolates). Chem. Commun. 2011, 47, 6623–6625.10.1039/c1cc11173fSuche in Google Scholar PubMed

32. Tan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A., Tiekink, E. R. T. Persistence of C–H···π(chelate ring) interactions in the crystal structures of Pd(S2COR)2. The utility of Pd(S2COR)2 as precursors for palladium sulphide materials. CrystEngComm 2016, 18, 1105–1117.10.1039/C5CE02126JSuche in Google Scholar

33. Tan, S. L., Lee, S. M., Lo, K. M., Otero-de-la-Roza, A., Tiekink, E. R. T. Experimental and computational evidence for a stabilising C–Cl(lone-pair)···π(chelate-ring) interaction. CrystEngComm 2021, 23, 119–130.10.1039/D0CE01478HSuche in Google Scholar

34. Tiekink, E. R. T. The remarkable propensity for the formation of C–H⋯π(chelate ring) interactions in the crystals of the first-row transition metal dithiocarbamates and the supramolecular architectures they sustain. CrystEngComm 2020, 22, 7308–7333.10.1039/D0CE00289ESuche in Google Scholar

35. Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B., Zarić, S. D. Noncovalent bonding: stacking interactions of chelate rings of transition metal complexes. Coord. Chem. Rev. 2017, 345, 318–341.10.1016/j.ccr.2016.12.020Suche in Google Scholar

36. Tiekink, E. R. T. Supramolecular architectures sustained by delocalised C–I···π(arene) interactions in molecular crystals and the propensity of their formation. CrystEngComm 2021, 23, 904–928.10.1039/D0CE01677BSuche in Google Scholar

37. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 380–388.10.1107/S0108768102003890Suche in Google Scholar PubMed

38. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J., Taylor, R. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 389–397.10.1107/S0108768102003324Suche in Google Scholar

39. Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451.10.1021/j100785a001Suche in Google Scholar

40. Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896.10.1039/b003010oSuche in Google Scholar

41. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 1–11.10.1107/S2056989019016244Suche in Google Scholar PubMed PubMed Central

42. Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany, 2006.Suche in Google Scholar

43. Gama, S., Mendes, F., Marques, F., Santos, I. C., Fernanda Carvalho, M., Correia, I., Pessoa, J. C., Santos, I., Paulo, A. Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J. Inorg. Biochem. 2011, 105, 637–644.10.1016/j.jinorgbio.2011.01.013Suche in Google Scholar PubMed

44. Gamekkanda, J. C., Sinha, A. S., Desper, J., Ðaković, M., Aakeröy, C. B. Crystals 2017, 7, 226.10.3390/cryst7070226Suche in Google Scholar

45. Klein-Heβing, C., Blockhaus, T., Sünkel, K. Synthesis and characterization of perhalogenated triphenylphosphine-cymantrenes [(C5X5)Mn(CO)2(PPh3)] (X = F, Cl, Br) and [(C5HI4)Mn(CO)2(PPh3)]. J. Organomet. Chem. 2021, 943, 121833.10.1016/j.jorganchem.2021.121833Suche in Google Scholar

46. Duffin, R. N., Blair, V. L., Kedzierski, L., Andrews, P. C. Development of new combination anti-leishmanial complexes: triphenyl Sb(V) mono-hydroxy mono-quinolinolates. J. Inorg. Biochem. 2021, 219, 111385.10.1016/j.jinorgbio.2021.111385Suche in Google Scholar PubMed

47. Kim, Y.-E., Kim, J., Park, J. W., Park, K., Lee, Y. σ-Complexation as a strategy for designing copper-based light emitters. Chem. Commun. 2017, 53, 2858–2861.10.1039/C6CC10139ASuche in Google Scholar PubMed

48. Sun, W.-H., Yang, H., Li, Z., Li, Y. Vinyl polymerization of norbornene with neutral salicylaldiminato nickel(II) complexes. Organometallics 2003, 22, 3678–3683.10.1021/om030018tSuche in Google Scholar

49. Sivchik, V., Sarker, R. K., Liu, Z.-Y., Chung, K.-Y., Grachova, E. V., Karttunen, A. J., Chou, P.-T., Koshevoy, I. O. Improvement of the photophysical performance of platinum-cyclometalated complexes in halogen-bonded adducts. Chem. Eur. J. 2018, 24, 11475–11484.10.1002/chem.201802182Suche in Google Scholar PubMed

50. Katlenok, E. A., Haukka, M., Levin, O. V., Frontera, A., Kukushkin, V. Yu. Supramolecular assembly of metal complexes by (aryl)I⋯dz[PtII] halogen bonds. Chem. Eur. J. 2020, 26, 7692–7701.10.1002/chem.202001196Suche in Google Scholar PubMed

51. Lapadula, G., Judaš, N., Friščić, T., Jones, W. A three-component modular strategy to extend and link coordination complexes by using halogen bonds to O, S and π acceptors. Chem. Eur. J. 2010, 16, 7400–7403.10.1002/chem.201000049Suche in Google Scholar PubMed

52. Ingner, F. J. L., Schmitt, A.-C., Orthaber, A., Gates, P. J., Pilarski, L. T. Mild and efficient synthesis of diverse organo-AuI-L complexes in green solvents. ChemSusChem 2020, 13, 2032–2037.10.1002/cssc.201903415Suche in Google Scholar PubMed PubMed Central

53. August Ridenour, J., Schofield, M. H., Cahill, C. L. Structural and computational investigation of halogen bonding effects on spectroscopic properties within a series of halogenated uranyl benzoates. Cryst. Growth Des. 2020, 20, 1311–1318.10.1021/acs.cgd.9b01567Suche in Google Scholar

54. Sharutin, V. Private Communication to the Cambridge Structural Database; Refcode AZOVIW, 2016.Suche in Google Scholar

55. Nandi, G., Titi, H. M., Goldberg, I. Exploring supramolecular self-assembly of metalloporphyrin tectons by halogen bonding. 2. Cryst. Growth Des. 2014, 14, 3557–3566.10.1021/cg500491cSuche in Google Scholar

56. Muniappan, S., Lipstman, S., Goldberg, I. Rational design of supramolecular chirality in porphyrin assemblies: the halogen bond case. Chem. Commun. 2008, 1777–1779.10.1039/b719625cSuche in Google Scholar PubMed

57. Adonin, S. A., Petrov, M. A., Abramov, P. A., Novikov, A. S., Sokolov, M. N., Fedin, V. P. Halogen bonding in heteroleptic Cu(II)2‐iodobenzoates. Polyhedron 2019, 171, 312–316.10.1016/j.poly.2019.07.020Suche in Google Scholar

58. Xie, J., Batten, S. R., Zou, Y., Ren, X. Observation of in situ ligand reactions during the assembly of crystalline Zn–S clusters. Cryst. Growth Des. 2011, 11, 16–20.10.1021/cg100926gSuche in Google Scholar

59. Bolitho, E. Private Communication to the Cambridge Structural Database; Refcode FACMEF, 2020.Suche in Google Scholar

60. Mamane, V., Peluso, P., Aubert, E., Weiss, R., Wenger, E., Cossu, S., Pale, P. Disubstituted ferrocenyl iodo- and chalcogenoalkynes as chiral halogen and chalcogen bond donors. Organometallics 2020, 39, 3936–3950.10.1021/acs.organomet.0c00633Suche in Google Scholar

61. Friedlein, F. K., Kromm, K., Hampel, F., Gladysz, J. A. Synthesis, structure, and reactivity of palladacycles that contain a chiral rhenium fragment in the backbone: new cyclometalation and catalyst design strategies. Chem. Eur. J. 2006, 12, 5267–5281.10.1002/chem.200501540Suche in Google Scholar PubMed

62. Leung, A. C. W., Chong, J. H., Patrick, B. O., MacLachlan, M. J. Poly(salphenyleneethynylene)s: a new class of soluble, conjugated, metal-containing polymers. Macromolecules 2003, 36, 5051–5054.10.1021/ma034229lSuche in Google Scholar

63. Duchemin, C., Smits, G., Cramer, N. RhI, IrIII, and CoIII complexes with atropchiral biaryl cyclopentadienyl ligands: syntheses, structures, and catalytic activities. Organometallics 2019, 38, 3939–3947.10.1021/acs.organomet.9b00365Suche in Google Scholar

64. Argazzi, R., Bergamini, P., Costa, E., Gee, V., Hogg, J. K., Martin, A., Orpen, A. G., Pringle, P. G. Anchimeric assistance by platinum(II) in the epimerizations of [PtX(CHXSiMe3)(R,R-chiraphos)]. Organometallics 1996, 15, 5591–5597.10.1021/om9605950Suche in Google Scholar

65. Nimitsiriwat, N., Gibson, V. C., Marshall, E. L., Elsegood, M. R. J. Bidentate salicylaldiminato tin(II) complexes and their use as lactide polymerisation initiators. Dalton Trans. 2009, 3710–3715.10.1039/b812877dSuche in Google Scholar PubMed

66. Kobayashi, K., Kobayashi, N., Ikuta, M., Therrien, B., Sakamoto, S., Yamaguchi, K. Syntheses of hexakis(4-functionalized-phenyl)benzenes and hexakis[4-(4ʹ-functionalized- phenylethynyl)phenyl]benzenes directed to host molecules for guest-inclusion network. J. Org. Chem. 2005, 70, 749–752.10.1021/jo048521iSuche in Google Scholar PubMed

67. Gulevskaya, A. V., Lazarevich, R. Yu., Pozharskii, A. F. Electrophilic cyclizations of 2,3-dialkynylquinoxalines and 1,2-dialkynylbenzenes: a comparative study. Tetrahedron 2013, 69, 910–917.10.1016/j.tet.2012.10.098Suche in Google Scholar

Received: 2022-06-04
Accepted: 2022-07-08
Published Online: 2022-08-02
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0038/html?lang=de
Button zum nach oben scrollen