Home RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
Article
Licensed
Unlicensed Requires Authentication

RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure

  • Lars Schumacher , Simon Engelbert , Steffen Klenner , Samir F. Matar and Rainer Pöttgen EMAIL logo
Published/Copyright: February 25, 2022

Abstract

The stannides RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing (1220 K for RE = Y, Gd–Tm and 1170 K for RE = Lu) in sealed silica ampoules for 11 days. X-ray powder diffraction studies confirm the hexagonal Lu3Co2In4 type structure, space group P 6 . The structure of Gd3Rh2Sn4 was refined from single crystal X-ray diffractometer data for a twinned crystal: a = 744.04(6), c = 409.23(4) pm, wR2 = 0.0288, 567 F2 values and 21 variables. The RE3Rh2Sn4 stannides derive from the well-known equiatomic stannides RERhSn (≍RE3Rh3Sn3) by Rh/Sn ordering within the RE6 trigonal prisms. The striking structural motif is the trigonal planar tin coordination of the Sn2 atoms with 288 pm Sn2–Sn1 distances. The Sn2 atoms carry substantially more negative charge than the Sn1 atoms. This is underlined by 119Sn isomer shifts of δ = 1.86(1) mm s−1 for Sn1 and δ = 2.26(1) mm s−1 for Sn2 detected in the Mössbauer spectrum of Lu3Rh2Sn4. From atoms in molecules (AIM) analysis of the charge density obtained with calculation based on density functional theory (DFT) for Y3Rh2Sn4, the charge transfer proceeds from yttrium towards more electronegative rhodium. Little departure from neutrality is observed for tin whose itinerant s-like states are little involved with the bonding. The site projected density of states (DOS) and the crystal orbital overlap population (COOP) plots further illustrate these observations and reveal major Y–Rh and Rh–Sn bonding, while Y–Sn bonding is weaker.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters and Dr. T. Block for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar

2. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

3. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53, https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar

4. Rundqvist, S., Jellinek, F. Acta Chem. Scand. 1959, 13, 425–432, https://doi.org/10.3891/acta.chem.scand.13-0425.Search in Google Scholar

5. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar

6. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Search in Google Scholar

7. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

8. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606, https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

9. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar

10. Jeitschko, W. Acta Crystallogr. B 1970, 26, 815–822, https://doi.org/10.1107/s0567740870003163.Search in Google Scholar

11. Zumdick, M. F., Pöttgen, R. Z. Kristallografiya 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar

12. Gulay, N. L., Hoffmann, R.-D., Kösters, J., Kalychak, Y. M., Seidel, S., Pöttgen, R. Z. Kristallografiya 2021, 236, 81–91, https://doi.org/10.1515/zkri-2021-2007.Search in Google Scholar

13. Engelbert, S., Hoffmann, R.-D., Kösters, J., Klenner, S., Pöttgen, R. Z. Kristallografiya 2021, 236, 93–104, https://doi.org/10.1515/zkri-2021-2008.Search in Google Scholar

14. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y., Sobolev, A. N. Dopov. Akad. Nauk. Ukr. RSR, Ser. B 1989, 2, 37.Search in Google Scholar

15. Rodewald, U. C., Lukachuk, M., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2005, 136, 1985–1991, https://doi.org/10.1007/s00706-005-0375-y.Search in Google Scholar

16. Heying, B., Niehaus, O., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2016, 71b, 1261–1267, https://doi.org/10.1515/znb-2016-0167.Search in Google Scholar

17. Stein, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 765–772, https://doi.org/10.1515/znb-2018-0091.Search in Google Scholar

18. Baran, S., Tyvanchuk, Y., Kalychak, Y., Szytuła, A. Phase Transitions 2018, 91, 111–117, https://doi.org/10.1080/01411594.2017.1402178.Search in Google Scholar

19. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Stel’makhovych, B., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289–295, https://doi.org/10.1515/znb-2018-0275.Search in Google Scholar

20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 361–367, https://doi.org/10.1515/znb-2021-0072.Search in Google Scholar

21. Lukachuk, M., Zaremba, V. I., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189, https://doi.org/10.1515/znb-2004-0210.Search in Google Scholar

22. Skolozdra, R. V. Stannides of rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds.; Elsevier Science: Amsterdam, Vol. 24, 1997, p. 399.10.1016/S0168-1273(97)24009-2Search in Google Scholar

23. Kalychak, Ya. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr., Pecharsky, V. K., Bünzli, J.-C., Eds.; Elsevier: Amsterdam, Vol. 34, 2005, pp. 1–133. chapter 218.10.1016/S0168-1273(04)34001-8Search in Google Scholar

24. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677–698.10.1515/znb-2006-0607Search in Google Scholar

25. Gupta, S., Suresh, K. G., Nigam, A. K. J. Appl. Phys. 2012, 112, 103909, https://doi.org/10.1063/1.4766900.Search in Google Scholar

26. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

27. Dwight, A. E., Harper, W. C., Kimball, C. W. J. Less-Common Met. 1973, 30, 1–8, https://doi.org/10.1016/0022-5088(73)90002-7.Search in Google Scholar

28. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74, https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

29. Iandelli, A., Palenzona, A., Bonino, G. B. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 1966, 40, 623–628.Search in Google Scholar

30. François, M., Venturini, G., Malaman, B., Roques, B. J. Less-Common. Met. 1990, 160, 197–213.10.1016/0022-5088(90)90381-SSearch in Google Scholar

31. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

32. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

33. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871, https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

34. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138, https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

35. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186, https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed

36. Kresse, G., Joubert, J. Phys. Rev. B 1999, 59, 1758–1775, https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

37. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.10.1103/PhysRevB.50.17953Search in Google Scholar PubMed

38. Perdew, J., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868, https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

39. Bader, R. F. Chem. Rev. 1991, 91, 893–928, https://doi.org/10.1021/cr00005a013.Search in Google Scholar

40. Eyert, V. The Augmented Spherical Wave Method. A Comprehensive Treatment, Lecture Notes in Physics; Springer: Heidelberg, 2007.Search in Google Scholar

41. Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 846–878, https://doi.org/10.1002/anie.198708461.Search in Google Scholar

42. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16, https://doi.org/10.1107/s2052519212051366.Search in Google Scholar

43. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790, https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

44. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallografiya 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

45. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

46. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

47. Fässler, T. F., Hoffmann, S., Kronseder, C. Z. Anorg. Allg. Chem. 2001, 627, 2486–2492.10.1002/1521-3749(200111)627:11<2486::AID-ZAAC2486>3.0.CO;2-ISearch in Google Scholar

48. Kim, S.-J., Fässler, T. F. Z. Kristallogr. NCS 2008, 223, 325–326.10.1524/ncrs.2008.0140Search in Google Scholar

49. Łątka, K., Kmieć, R., Kruk, R., Pacyna, A. W., Fickenscher, T., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2005, 178, 2077–2090.10.1016/j.jssc.2005.04.010Search in Google Scholar

50. Mishra, R., Pöttgen, R., Hoffmann, R.-D., Trill, H., Mosel, B. D., Piotrowski, H., Zumdick, M. F. Z. Naturforsch. 2001, 56b, 589–597, https://doi.org/10.1515/znb-2001-0705.Search in Google Scholar

51. Hoffmann, R.-D., Kußmann, D., Rodewald, U. C., Pöttgen, R., Rosenhahn, C., Mosel, B. D. Z. Naturforsch. 1999, 54b, 709–717, https://doi.org/10.1515/znb-1999-0602.Search in Google Scholar

52. Leithe-Jasper, A., Weitzer, F., Rogl, P., Qi, Q., Coey, J. M. D. Hyperfine Interact. 1994, 94, 2327–2332, https://doi.org/10.1007/bf02063783.Search in Google Scholar

53. Klenner, S., Reimann, M. K., Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 453–461, https://doi.org/10.1515/znb-2021-0080.Search in Google Scholar

Received: 2022-02-01
Accepted: 2022-02-09
Published Online: 2022-02-25
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0007/html?lang=en
Scroll to top button