Startseite Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt

  • Alexandra A. Heidecker EMAIL logo , Moritz Bohn und Alexander Pöthig EMAIL logo
Veröffentlicht/Copyright: 23. Februar 2022

Abstract

A new pseudo-rotaxane, consisting of a tubular, organometallic Ag-pillarplex ring and dodecyldiammonium axle component, is introduced and investigated towards potential non-covalent interactions by Full Interaction Maps (FIMs). FIMs predict regions of probable supramolecular interactions solely at the organic ligands, namely the rim and the aromatic rings of the pillarplex. The results were compared to structural parameters experimentally obtained by single-crystal X-ray diffraction. The pseudo-rotaxane was crystallized as a hydrated terephthalate salt, and the molecular and the crystal structure are discussed. The experimentally observed interactions are quantified using Hirshfeld surface analysis. In contrast to the FIMs prediction, four different interaction modes can be experimentally observed in the solid-state: encapsulation of a guest molecule, hydrogen bonding, π- and metal interactions.


Corresponding author: Alexandra A. Heidecker and Alexander Pöthig, Department of Chemistry & Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, D-85748 Garching, Germany, E-mail: (A. A. Heidecker), (A. Pöthig)

Award Identifier / Grant number: DFG SPP1928

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The TUM Catalysis Research Centre, TUM Faculty of Chemistry, the Deutsche Forschungsgemeinschaft (DFG SPP1928) are very much acknowledged for the funding of this work. A. A. H. thanks the TUM Graduate School for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Cram, D. J., Cram, J. M. Host-guest chemistry: complexes between organic compounds simulate the substrate selectivity of enzymes. Science 1974, 183, 803–809; https://doi.org/10.1126/science.183.4127.803.Suche in Google Scholar

2. Lehn, J. Supramolecular chemistry. Science 1993, 260, 1762–1763; https://doi.org/10.1126/science.8511582.Suche in Google Scholar

3. Lehn, J.-M. Supramolecular chemistry: receptors, catalysts, and carriers. Science 1985, 227, 849–856; https://doi.org/10.1126/science.227.4689.849.Suche in Google Scholar

4. Lehn, J.-M. Supramolecular chemistry: where from? Where to? Chem. Soc. Rev. 2017, 46, 2378–2379; https://doi.org/10.1039/c7cs00115k.Suche in Google Scholar

5. Rissanen, K. Crystallography of encapsulated molecules. Chem. Soc. Rev. 2017, 46, 2638–2648; https://doi.org/10.1039/c7cs00090a.Suche in Google Scholar

6. Desiraju, G. R. Chemistry beyond the molecule. Nature 2001, 412, 397–400; https://doi.org/10.1038/35086640.Suche in Google Scholar

7. Schmidt, H.-W., Würthner, F. A periodic system of supramolecular elements. Angew. Chem. Int. Ed. 2020, 59, 8766–8775; https://doi.org/10.1002/anie.201915643.Suche in Google Scholar

8. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 2495–2496.10.1021/ja00986a052Suche in Google Scholar

9. Del Valle, E. M. M. Cyclodextrins and their uses: a review. Process Biochem. 2004, 39, 1033–1046; https://doi.org/10.1016/s0032-9592(03)00258-9.Suche in Google Scholar

10. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 2005, 44, 4844–4870; https://doi.org/10.1002/anie.200460675.Suche in Google Scholar PubMed

11. Xue, M., Yang, Y., Chi, X., Zhang, Z., Huang, F. Pillararenes, A new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012, 45, 1294–1308; https://doi.org/10.1021/ar2003418.Suche in Google Scholar PubMed

12. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T.-A., Nakamoto, Y. para-Bridged symmetrical Pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023; https://doi.org/10.1021/ja711260m.Suche in Google Scholar PubMed

13. Ogoshi, T., Kakuta, T., Yamagishi, T.-A. Applications of pillar[n]arene-based supramolecular assemblies. Angew. Chem. Int. Ed. 2019, 58, 2197–2206; https://doi.org/10.1002/anie.201805884.Suche in Google Scholar PubMed

14. Li, Q., Zhu, H., Huang, F. Pillararene-based supramolecular functional materials. Trends Chem. 2020, 2, 850–864; https://doi.org/10.1016/j.trechm.2020.07.004.Suche in Google Scholar

15. Li, C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem. Commun. 2014, 50, 12420–12433; https://doi.org/10.1039/c4cc03170a.Suche in Google Scholar PubMed

16. Yang, K., Chao, S., Zhang, F., Pei, Y., Pei, Z. Recent advances in the development of rotaxanes and pseudorotaxanes based on pillar[n]arenes: from construction to application. Chem. Commun. 2019, 55, 13198–13210; https://doi.org/10.1039/c9cc07373f.Suche in Google Scholar PubMed

17. Kitajima, K., Ogoshi, T., Yamagishi, T.-A. Diastereoselective synthesis of a [2]catenane from a pillar[5]arene and a pyridinium derivative. Chem. Commun. 2014, 50, 2925–2927; https://doi.org/10.1039/c3cc49794a.Suche in Google Scholar PubMed

18. Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M. Z., Yaghi, O. M., Stoddart, J. F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed. 2010, 49, 8630–8634; https://doi.org/10.1002/anie.201002343.Suche in Google Scholar PubMed

19. Liang, J., Xing, S., Brandt, P., Nuhnen, A., Schlüsener, C., Sun, Y., Janiak, C. A chemically stable cucurbit[6]uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation. J. Mater. Chem. 2020, 8, 19799–19804; https://doi.org/10.1039/d0ta07457h.Suche in Google Scholar

20. Guo, H., Ye, J., Zhang, Z., Wang, Y., Yuan, X., Ou, C., Ding, Y., Yan, C., Wang, J., Yao, Y. Pillar[5]arene-based [2]rotaxane: synthesis, characterization, and application in a coupling reaction. Inorg. Chem. 2020, 59, 11915–11919; https://doi.org/10.1021/acs.inorgchem.0c01752.Suche in Google Scholar PubMed

21. Song, N., Kakuta, T., Yamagishi, T.-A., Yang, Y.-W., Ogoshi, T. Molecular-scale porous materials based on Pillar[n]arenes. Inside Chem. 2018, 4, 2029–2053; https://doi.org/10.1016/j.chempr.2018.05.015.Suche in Google Scholar

22. Jie, K., Zhou, Y., Li, E., Huang, F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018, 51, 2064–2072; https://doi.org/10.1021/acs.accounts.8b00255.Suche in Google Scholar PubMed

23. Huang, Y., Gao, R.-H., Liu, M., Chen, L.-X., Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Chen, K., Tao, Z. Cucurbit[n]uril-based supramolecular frameworks assembled through outer-surface interactions. Angew. Chem. Int. Ed. 2021, 60, 15166–15191; https://doi.org/10.1002/anie.202002666.Suche in Google Scholar PubMed

24. Cheng, R. X., Tian, F. Y., Zhang, Y. Q., Chen, K., Zhu, Q. J., Tao, Z. TMeQ[6]-based supramolecular frameworks assembled through outer surface interactions and their potential applications. J. Mater. Sci. 2020, 55, 16497–16509; https://doi.org/10.1007/s10853-020-05180-7.Suche in Google Scholar

25. Gao, R.-H., Huang, Y., Chen, K., Tao, Z. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications. Coord. Chem. Rev. 2021, 437, 213741; https://doi.org/10.1016/j.ccr.2020.213741.Suche in Google Scholar

26. Ogoshi, T., Takashima, S., Yamagishi, T.-A. Molecular recognition with microporous multilayer films prepared by layer-by-layer assembly of pillar[5]arenes. J. Am. Chem. Soc. 2015, 137, 10962–10964; https://doi.org/10.1021/jacs.5b07415.Suche in Google Scholar PubMed

27. Jie, K., Zhou, Y., Li, E., Zhao, R., Huang, F. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals. Angew. Chem. Int. Ed. 2018, 57, 12845–12849; https://doi.org/10.1002/anie.201808998.Suche in Google Scholar PubMed

28. Wu, J.-R., Yang, Y.-W. Synthetic macrocycle-based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. 2021, 60, 1690–1701; https://doi.org/10.1002/anie.202006999.Suche in Google Scholar PubMed

29. Pöthig, A., Casini, A. Recent developments of supramolecular metal-based structures for applications in cancer therapy and imaging. Theranostics 2019, 9, 3150–3169.10.7150/thno.31828Suche in Google Scholar PubMed PubMed Central

30. Ibáñez, S., Poyatos, M., Peris, E. N-heterocyclic carbenes: a door open to supramolecular organometallic chemistry. Acc. Chem. Res. 2020, 53, 1401–1413.10.1021/acs.accounts.0c00312Suche in Google Scholar PubMed

31. Han, Y.-F., Li, H., Jin, G.-X. Host–guest chemistry with bi- and tetra-nuclear macrocyclic metallasupramolecules. Chem. Commun. 2010, 46, 6879–6890; https://doi.org/10.1039/c0cc00770f.Suche in Google Scholar PubMed

32. Hahn, F. E., Langenhahn, V., Lügger, T., Pape, T., Le Van, D. Template synthesis of a coordinated tetracarbene ligand with crown ether topology. Angew. Chem. Int. Ed. 2005, 44, 3759–3763; https://doi.org/10.1002/anie.200462690.Suche in Google Scholar PubMed

33. Gutiérrez-Blanco, A., Dobbe, C., Hepp, A., Daniliuc, C. G., Poyatos, M., Hahn, F. E., Peris, E. Synthesis and characterization of poly-NHC-derived silver(I) assemblies and their transformation into poly-imidazolium macrocycles. Eur. J. Inorg. Chem. 2021, 2021, 2442–2451.10.1002/ejic.202100245Suche in Google Scholar

34. Martínez-Agramunt, V., Eder, T., Darmandeh, H., Guisado-Barrios, G., Peris, E. A size-flexible organometallic box for the encapsulation of fullerenes. Angew. Chem. Int. Ed. 2019, 58, 5682–5686; https://doi.org/10.1002/anie.201901586.Suche in Google Scholar PubMed

35. Ibáñez, S., Peris, E. A rigid trigonal-prismatic hexagold metallocage that behaves as a coronene trap. Angew. Chem. Int. Ed. 2019, 58, 6693–6697.10.1002/anie.201902568Suche in Google Scholar PubMed

36. Guan, S., Pickl, T., Jandl, C., Schuchmann, L., Zhou, X., Altmann, P. J., Pöthig, A. Triazolate-based Pillarplexes: shape-adaptive metallocavitands via rim modification of macrocyclic ligands. Org. Chem. Front. 2021, 8, 4061–4070; https://doi.org/10.1039/d1qo00588j.Suche in Google Scholar

37. Ibáñez, S., Peris, E. Shape-adaptability and redox-switching properties of a di-gold metallotweezer. Chem. Eur. J. 2021, 27, 9661–9665.10.1002/chem.202100794Suche in Google Scholar PubMed PubMed Central

38. Poyatos, M., Mata, J. A., Peris, E. Complexes with poly(N-heterocyclic carbene) ligands: structural features and catalytic applications. Chem. Rev. 2009, 109, 3677–3707; https://doi.org/10.1021/cr800501s.Suche in Google Scholar PubMed

39. Altmann, P. J., Pöthig, A. Pillarplexes: a metal-organic class of supramolecular hosts. J. Am. Chem. Soc. 2016, 138, 13171–13174; https://doi.org/10.1021/jacs.6b08571.Suche in Google Scholar PubMed

40. Altmann, P. J., Pöthig, A. A pH-dependent, mechanically interlocked switch: organometallic [2]rotaxane vs. organic [3]rotaxane. Angew. Chem. Int. Ed. 2017, 56, 15733–15736; https://doi.org/10.1002/anie.201709921.Suche in Google Scholar PubMed

41. Pöthig, A., Ahmed, S., Winther-Larsen, H. C., Guan, S., Altmann, P. J., Kudermann, J., Santos Andresen, A. M., Gjøen, T., Høgmoen Åstrand, O. A. Antimicrobial activity and cytotoxicity of Ag(I) and Au(I) Pillarplexes. Front. Chem. 2018, 6, 1–8; https://doi.org/10.3389/fchem.2018.00584.Suche in Google Scholar PubMed PubMed Central

42. Barin, G., Forgan, R. S., Stoddart, J. F. Mechanostereochemistry and the mechanical bond. Proc. Math. Phys. Eng. Sci. 2012, 468, 2849–2880; https://doi.org/10.1098/rspa.2012.0117.Suche in Google Scholar PubMed PubMed Central

43. Rojas-Poblete, M., Rodríguez-Kessler, P. L., Guajardo Maturana, R., Muñoz-Castro, A. Coinage-metal Pillarplexes hosts. Insights into host–guest interaction nature and luminescence quenching effects. Phys. Chem. Chem. Phys. 2021, 23, 15917–15924.10.1039/D1CP00849HSuche in Google Scholar PubMed

44. Mohanty, B., Venkataramanan, N. S. Sustainable metallocavitand for flue gas-selective sorption: a multiscale study. J. Phys. Chem. C 2019, 123, 3188–3202; https://doi.org/10.1021/acs.jpcc.8b11185.Suche in Google Scholar

45. Cebollada, A., Vellé, A., Iglesias, M., Fullmer, L. B., Goberna-Ferrón, S., Nyman, M., Sanz Miguel, P. J. Direct X-ray scattering evidence for metal–metal interactions in solution at the molecular level. Angew. Chem. Int. Ed. 2015, 54, 12762–12766; https://doi.org/10.1002/anie.201505736.Suche in Google Scholar PubMed

46. Vellé, A., Rodríguez-Santiago, L., Sodupe, M., Sanz Miguel, P. J. Enhanced metallophilicity in metal-carbene systems: stronger character of aurophilic interactions in solution. Chem. Eur J. 2020, 26, 997–1002.10.1002/chem.201904507Suche in Google Scholar PubMed

47. Wagner, T., Pöthig, A., Augenstein, H. M. S., Schmidt, T. D., Kaposi, M., Herdtweck, E., Brütting, W., Herrmann, W. A., Kühn, F. E. From simple ligands to complex structures: structural diversity of silver(I) complexes bearing tetradentate (alkylenebimpy) NHC ligands. Organometallics 2015, 34, 1522–1529; https://doi.org/10.1021/om5013067.Suche in Google Scholar

48. Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R., Pidcock, E. Evaluation of molecular crystal structures using Full Interaction Maps. CrystEngComm 2013, 15, 65–72; https://doi.org/10.1039/c2ce25849h.Suche in Google Scholar

49. Novikov, A. S. IsoStar program suite for studies of noncovalent interactions in crystals of chemical compounds. Cryst 2021, 11, 162; https://doi.org/10.3390/cryst11020162.Suche in Google Scholar

50. Verdonk, M. L., Cole, J. C., Taylor, R. SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J. Mol. Biol. 1999, 289, 1093–1108; https://doi.org/10.1006/jmbi.1999.2809.Suche in Google Scholar PubMed

51. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Suche in Google Scholar

52. Jayatilaka, D., Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Spackman, M. A. CrystalExplorer: a tool for displaying Hirshfeld surfaces and visualising intermolecular interactions in molecular crystals. Acta Crystallogr. A 2006, 62, s90; https://doi.org/10.1107/s0108767306098199.Suche in Google Scholar

53. McKinnon, J. J., Mitchell, A. S., Spackman, M. A. Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. Eur J. 1998, 4, 2136–2141; https://doi.org/10.1002/(sici)1521-3765(19981102)4:11<2136::aid-chem2136>3.0.co;2-g.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSuche in Google Scholar

54. Spackman, M. A., McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Suche in Google Scholar

55. Desiraju, G. R. Hydrogen bonds and other intermolecular interactions in organometallic crystals. J. Chem. Soc. Dalton Trans. 2000, 3745–3751; https://doi.org/10.1039/b003285i.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2076).


Received: 2021-12-17
Accepted: 2022-02-07
Published Online: 2022-02-23
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2076/html
Button zum nach oben scrollen