Abstract
A new pseudo-rotaxane, consisting of a tubular, organometallic Ag-pillarplex ring and dodecyldiammonium axle component, is introduced and investigated towards potential non-covalent interactions by Full Interaction Maps (FIMs). FIMs predict regions of probable supramolecular interactions solely at the organic ligands, namely the rim and the aromatic rings of the pillarplex. The results were compared to structural parameters experimentally obtained by single-crystal X-ray diffraction. The pseudo-rotaxane was crystallized as a hydrated terephthalate salt, and the molecular and the crystal structure are discussed. The experimentally observed interactions are quantified using Hirshfeld surface analysis. In contrast to the FIMs prediction, four different interaction modes can be experimentally observed in the solid-state: encapsulation of a guest molecule, hydrogen bonding, π- and metal interactions.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: DFG SPP1928
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The TUM Catalysis Research Centre, TUM Faculty of Chemistry, the Deutsche Forschungsgemeinschaft (DFG SPP1928) are very much acknowledged for the funding of this work. A. A. H. thanks the TUM Graduate School for financial support.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Cram, D. J., Cram, J. M. Host-guest chemistry: complexes between organic compounds simulate the substrate selectivity of enzymes. Science 1974, 183, 803–809; https://doi.org/10.1126/science.183.4127.803.Suche in Google Scholar
2. Lehn, J. Supramolecular chemistry. Science 1993, 260, 1762–1763; https://doi.org/10.1126/science.8511582.Suche in Google Scholar
3. Lehn, J.-M. Supramolecular chemistry: receptors, catalysts, and carriers. Science 1985, 227, 849–856; https://doi.org/10.1126/science.227.4689.849.Suche in Google Scholar
4. Lehn, J.-M. Supramolecular chemistry: where from? Where to? Chem. Soc. Rev. 2017, 46, 2378–2379; https://doi.org/10.1039/c7cs00115k.Suche in Google Scholar
5. Rissanen, K. Crystallography of encapsulated molecules. Chem. Soc. Rev. 2017, 46, 2638–2648; https://doi.org/10.1039/c7cs00090a.Suche in Google Scholar
6. Desiraju, G. R. Chemistry beyond the molecule. Nature 2001, 412, 397–400; https://doi.org/10.1038/35086640.Suche in Google Scholar
7. Schmidt, H.-W., Würthner, F. A periodic system of supramolecular elements. Angew. Chem. Int. Ed. 2020, 59, 8766–8775; https://doi.org/10.1002/anie.201915643.Suche in Google Scholar
8. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 2495–2496.10.1021/ja00986a052Suche in Google Scholar
9. Del Valle, E. M. M. Cyclodextrins and their uses: a review. Process Biochem. 2004, 39, 1033–1046; https://doi.org/10.1016/s0032-9592(03)00258-9.Suche in Google Scholar
10. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 2005, 44, 4844–4870; https://doi.org/10.1002/anie.200460675.Suche in Google Scholar PubMed
11. Xue, M., Yang, Y., Chi, X., Zhang, Z., Huang, F. Pillararenes, A new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012, 45, 1294–1308; https://doi.org/10.1021/ar2003418.Suche in Google Scholar PubMed
12. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T.-A., Nakamoto, Y. para-Bridged symmetrical Pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023; https://doi.org/10.1021/ja711260m.Suche in Google Scholar PubMed
13. Ogoshi, T., Kakuta, T., Yamagishi, T.-A. Applications of pillar[n]arene-based supramolecular assemblies. Angew. Chem. Int. Ed. 2019, 58, 2197–2206; https://doi.org/10.1002/anie.201805884.Suche in Google Scholar PubMed
14. Li, Q., Zhu, H., Huang, F. Pillararene-based supramolecular functional materials. Trends Chem. 2020, 2, 850–864; https://doi.org/10.1016/j.trechm.2020.07.004.Suche in Google Scholar
15. Li, C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem. Commun. 2014, 50, 12420–12433; https://doi.org/10.1039/c4cc03170a.Suche in Google Scholar PubMed
16. Yang, K., Chao, S., Zhang, F., Pei, Y., Pei, Z. Recent advances in the development of rotaxanes and pseudorotaxanes based on pillar[n]arenes: from construction to application. Chem. Commun. 2019, 55, 13198–13210; https://doi.org/10.1039/c9cc07373f.Suche in Google Scholar PubMed
17. Kitajima, K., Ogoshi, T., Yamagishi, T.-A. Diastereoselective synthesis of a [2]catenane from a pillar[5]arene and a pyridinium derivative. Chem. Commun. 2014, 50, 2925–2927; https://doi.org/10.1039/c3cc49794a.Suche in Google Scholar PubMed
18. Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M. Z., Yaghi, O. M., Stoddart, J. F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed. 2010, 49, 8630–8634; https://doi.org/10.1002/anie.201002343.Suche in Google Scholar PubMed
19. Liang, J., Xing, S., Brandt, P., Nuhnen, A., Schlüsener, C., Sun, Y., Janiak, C. A chemically stable cucurbit[6]uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation. J. Mater. Chem. 2020, 8, 19799–19804; https://doi.org/10.1039/d0ta07457h.Suche in Google Scholar
20. Guo, H., Ye, J., Zhang, Z., Wang, Y., Yuan, X., Ou, C., Ding, Y., Yan, C., Wang, J., Yao, Y. Pillar[5]arene-based [2]rotaxane: synthesis, characterization, and application in a coupling reaction. Inorg. Chem. 2020, 59, 11915–11919; https://doi.org/10.1021/acs.inorgchem.0c01752.Suche in Google Scholar PubMed
21. Song, N., Kakuta, T., Yamagishi, T.-A., Yang, Y.-W., Ogoshi, T. Molecular-scale porous materials based on Pillar[n]arenes. Inside Chem. 2018, 4, 2029–2053; https://doi.org/10.1016/j.chempr.2018.05.015.Suche in Google Scholar
22. Jie, K., Zhou, Y., Li, E., Huang, F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018, 51, 2064–2072; https://doi.org/10.1021/acs.accounts.8b00255.Suche in Google Scholar PubMed
23. Huang, Y., Gao, R.-H., Liu, M., Chen, L.-X., Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Chen, K., Tao, Z. Cucurbit[n]uril-based supramolecular frameworks assembled through outer-surface interactions. Angew. Chem. Int. Ed. 2021, 60, 15166–15191; https://doi.org/10.1002/anie.202002666.Suche in Google Scholar PubMed
24. Cheng, R. X., Tian, F. Y., Zhang, Y. Q., Chen, K., Zhu, Q. J., Tao, Z. TMeQ[6]-based supramolecular frameworks assembled through outer surface interactions and their potential applications. J. Mater. Sci. 2020, 55, 16497–16509; https://doi.org/10.1007/s10853-020-05180-7.Suche in Google Scholar
25. Gao, R.-H., Huang, Y., Chen, K., Tao, Z. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications. Coord. Chem. Rev. 2021, 437, 213741; https://doi.org/10.1016/j.ccr.2020.213741.Suche in Google Scholar
26. Ogoshi, T., Takashima, S., Yamagishi, T.-A. Molecular recognition with microporous multilayer films prepared by layer-by-layer assembly of pillar[5]arenes. J. Am. Chem. Soc. 2015, 137, 10962–10964; https://doi.org/10.1021/jacs.5b07415.Suche in Google Scholar PubMed
27. Jie, K., Zhou, Y., Li, E., Zhao, R., Huang, F. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals. Angew. Chem. Int. Ed. 2018, 57, 12845–12849; https://doi.org/10.1002/anie.201808998.Suche in Google Scholar PubMed
28. Wu, J.-R., Yang, Y.-W. Synthetic macrocycle-based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. 2021, 60, 1690–1701; https://doi.org/10.1002/anie.202006999.Suche in Google Scholar PubMed
29. Pöthig, A., Casini, A. Recent developments of supramolecular metal-based structures for applications in cancer therapy and imaging. Theranostics 2019, 9, 3150–3169.10.7150/thno.31828Suche in Google Scholar PubMed PubMed Central
30. Ibáñez, S., Poyatos, M., Peris, E. N-heterocyclic carbenes: a door open to supramolecular organometallic chemistry. Acc. Chem. Res. 2020, 53, 1401–1413.10.1021/acs.accounts.0c00312Suche in Google Scholar PubMed
31. Han, Y.-F., Li, H., Jin, G.-X. Host–guest chemistry with bi- and tetra-nuclear macrocyclic metallasupramolecules. Chem. Commun. 2010, 46, 6879–6890; https://doi.org/10.1039/c0cc00770f.Suche in Google Scholar PubMed
32. Hahn, F. E., Langenhahn, V., Lügger, T., Pape, T., Le Van, D. Template synthesis of a coordinated tetracarbene ligand with crown ether topology. Angew. Chem. Int. Ed. 2005, 44, 3759–3763; https://doi.org/10.1002/anie.200462690.Suche in Google Scholar PubMed
33. Gutiérrez-Blanco, A., Dobbe, C., Hepp, A., Daniliuc, C. G., Poyatos, M., Hahn, F. E., Peris, E. Synthesis and characterization of poly-NHC-derived silver(I) assemblies and their transformation into poly-imidazolium macrocycles. Eur. J. Inorg. Chem. 2021, 2021, 2442–2451.10.1002/ejic.202100245Suche in Google Scholar
34. Martínez-Agramunt, V., Eder, T., Darmandeh, H., Guisado-Barrios, G., Peris, E. A size-flexible organometallic box for the encapsulation of fullerenes. Angew. Chem. Int. Ed. 2019, 58, 5682–5686; https://doi.org/10.1002/anie.201901586.Suche in Google Scholar PubMed
35. Ibáñez, S., Peris, E. A rigid trigonal-prismatic hexagold metallocage that behaves as a coronene trap. Angew. Chem. Int. Ed. 2019, 58, 6693–6697.10.1002/anie.201902568Suche in Google Scholar PubMed
36. Guan, S., Pickl, T., Jandl, C., Schuchmann, L., Zhou, X., Altmann, P. J., Pöthig, A. Triazolate-based Pillarplexes: shape-adaptive metallocavitands via rim modification of macrocyclic ligands. Org. Chem. Front. 2021, 8, 4061–4070; https://doi.org/10.1039/d1qo00588j.Suche in Google Scholar
37. Ibáñez, S., Peris, E. Shape-adaptability and redox-switching properties of a di-gold metallotweezer. Chem. Eur. J. 2021, 27, 9661–9665.10.1002/chem.202100794Suche in Google Scholar PubMed PubMed Central
38. Poyatos, M., Mata, J. A., Peris, E. Complexes with poly(N-heterocyclic carbene) ligands: structural features and catalytic applications. Chem. Rev. 2009, 109, 3677–3707; https://doi.org/10.1021/cr800501s.Suche in Google Scholar PubMed
39. Altmann, P. J., Pöthig, A. Pillarplexes: a metal-organic class of supramolecular hosts. J. Am. Chem. Soc. 2016, 138, 13171–13174; https://doi.org/10.1021/jacs.6b08571.Suche in Google Scholar PubMed
40. Altmann, P. J., Pöthig, A. A pH-dependent, mechanically interlocked switch: organometallic [2]rotaxane vs. organic [3]rotaxane. Angew. Chem. Int. Ed. 2017, 56, 15733–15736; https://doi.org/10.1002/anie.201709921.Suche in Google Scholar PubMed
41. Pöthig, A., Ahmed, S., Winther-Larsen, H. C., Guan, S., Altmann, P. J., Kudermann, J., Santos Andresen, A. M., Gjøen, T., Høgmoen Åstrand, O. A. Antimicrobial activity and cytotoxicity of Ag(I) and Au(I) Pillarplexes. Front. Chem. 2018, 6, 1–8; https://doi.org/10.3389/fchem.2018.00584.Suche in Google Scholar PubMed PubMed Central
42. Barin, G., Forgan, R. S., Stoddart, J. F. Mechanostereochemistry and the mechanical bond. Proc. Math. Phys. Eng. Sci. 2012, 468, 2849–2880; https://doi.org/10.1098/rspa.2012.0117.Suche in Google Scholar PubMed PubMed Central
43. Rojas-Poblete, M., Rodríguez-Kessler, P. L., Guajardo Maturana, R., Muñoz-Castro, A. Coinage-metal Pillarplexes hosts. Insights into host–guest interaction nature and luminescence quenching effects. Phys. Chem. Chem. Phys. 2021, 23, 15917–15924.10.1039/D1CP00849HSuche in Google Scholar PubMed
44. Mohanty, B., Venkataramanan, N. S. Sustainable metallocavitand for flue gas-selective sorption: a multiscale study. J. Phys. Chem. C 2019, 123, 3188–3202; https://doi.org/10.1021/acs.jpcc.8b11185.Suche in Google Scholar
45. Cebollada, A., Vellé, A., Iglesias, M., Fullmer, L. B., Goberna-Ferrón, S., Nyman, M., Sanz Miguel, P. J. Direct X-ray scattering evidence for metal–metal interactions in solution at the molecular level. Angew. Chem. Int. Ed. 2015, 54, 12762–12766; https://doi.org/10.1002/anie.201505736.Suche in Google Scholar PubMed
46. Vellé, A., Rodríguez-Santiago, L., Sodupe, M., Sanz Miguel, P. J. Enhanced metallophilicity in metal-carbene systems: stronger character of aurophilic interactions in solution. Chem. Eur J. 2020, 26, 997–1002.10.1002/chem.201904507Suche in Google Scholar PubMed
47. Wagner, T., Pöthig, A., Augenstein, H. M. S., Schmidt, T. D., Kaposi, M., Herdtweck, E., Brütting, W., Herrmann, W. A., Kühn, F. E. From simple ligands to complex structures: structural diversity of silver(I) complexes bearing tetradentate (alkylenebimpy) NHC ligands. Organometallics 2015, 34, 1522–1529; https://doi.org/10.1021/om5013067.Suche in Google Scholar
48. Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R., Pidcock, E. Evaluation of molecular crystal structures using Full Interaction Maps. CrystEngComm 2013, 15, 65–72; https://doi.org/10.1039/c2ce25849h.Suche in Google Scholar
49. Novikov, A. S. IsoStar program suite for studies of noncovalent interactions in crystals of chemical compounds. Cryst 2021, 11, 162; https://doi.org/10.3390/cryst11020162.Suche in Google Scholar
50. Verdonk, M. L., Cole, J. C., Taylor, R. SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J. Mol. Biol. 1999, 289, 1093–1108; https://doi.org/10.1006/jmbi.1999.2809.Suche in Google Scholar PubMed
51. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Suche in Google Scholar
52. Jayatilaka, D., Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Spackman, M. A. CrystalExplorer: a tool for displaying Hirshfeld surfaces and visualising intermolecular interactions in molecular crystals. Acta Crystallogr. A 2006, 62, s90; https://doi.org/10.1107/s0108767306098199.Suche in Google Scholar
53. McKinnon, J. J., Mitchell, A. S., Spackman, M. A. Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. Eur J. 1998, 4, 2136–2141; https://doi.org/10.1002/(sici)1521-3765(19981102)4:11<2136::aid-chem2136>3.0.co;2-g.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSuche in Google Scholar
54. Spackman, M. A., McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Suche in Google Scholar
55. Desiraju, G. R. Hydrogen bonds and other intermolecular interactions in organometallic crystals. J. Chem. Soc. Dalton Trans. 2000, 3745–3751; https://doi.org/10.1039/b003285i.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2076).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Crystallography in Germany rejuvenated
- Original Papers
- CalcOPP: a program for the calculation of one-particle potentials (OPPs)
- Synthesis and coordination to the coinage metals of a trimethylpyrazolyl substituted 3-arylacetylacetone
- Occupancy disorder in the magnetic topological insulator candidate Mn1−x Sb2+x Te4
- Structural study of anhydrous and hydrated 5-fluorouracil co-crystals with nicotinamide and isonicotinamide
- Synthesis, crystal-structure refinement and properties of bastnaesite-type PrF[CO3], SmF[CO3] and EuF[CO3]
- Crystallographic complexity partition analysis
- The “ferros” of MAPbI3: ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites
- Structure relations in the family of the solid solution Hf x Zr1−x O2
- The crystal structure of single crystalline PrCa4O[BO3]3
- Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt
- Quantum transport and microwave scattering on fractal lattices
- Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research
- Electronic structure of the homologous series of Ruddlesden–Popper phases SrO(SrTiO3) n , (n = 0–3, ∞)
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Crystallography in Germany rejuvenated
- Original Papers
- CalcOPP: a program for the calculation of one-particle potentials (OPPs)
- Synthesis and coordination to the coinage metals of a trimethylpyrazolyl substituted 3-arylacetylacetone
- Occupancy disorder in the magnetic topological insulator candidate Mn1−x Sb2+x Te4
- Structural study of anhydrous and hydrated 5-fluorouracil co-crystals with nicotinamide and isonicotinamide
- Synthesis, crystal-structure refinement and properties of bastnaesite-type PrF[CO3], SmF[CO3] and EuF[CO3]
- Crystallographic complexity partition analysis
- The “ferros” of MAPbI3: ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites
- Structure relations in the family of the solid solution Hf x Zr1−x O2
- The crystal structure of single crystalline PrCa4O[BO3]3
- Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt
- Quantum transport and microwave scattering on fractal lattices
- Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research
- Electronic structure of the homologous series of Ruddlesden–Popper phases SrO(SrTiO3) n , (n = 0–3, ∞)