Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research
Abstract
No scientific model has shaped crystallography as much as the classical nucleation theory (CNT). The majority of all growth processes and particle formation processes are attributed to the CNT. However, alternative descriptions exist that may be better suited to explain material formation under certain conditions. One of these alternatives is the dewetting theory (DWT). To describe the possibilities of DWT in more detail, we selected three material systems for three current application areas: Gold particles on silicon as catalysts for nanowire growth, indium particles on molybdenum as precursor material in novel solar cell concepts, and silicon layers on silicon germanium as potential wells in semiconductor quantum computers. Each of these material systems showed particular advantages of DWT over CNT. For example, the properties of surface particles with high atomic mobility could be described more realistically using DWT. Yet, there were clear indications that the DWT is not yet complete and that further research is needed to complete it. In particular, modern crystallographic challenges could serve this purpose, for example the development of semiconductor quantum computers, in order to re-evaluate known models such as the CNT and DWT and adapt them to the latest state of science and technology. For the time being, this article will give an outlook on the advantages of the DWT today and its potential for future research in crystallography.
Acknowledgement
The authors would like to thank a number of scientists who assisted in collecting the data, growing the nanostructures or discussing the results. Thanks go to Felix Lange, who grew the gold particles and nanowires for thermoelectrics using MBE. We thank Dr. Franziska Ringleb and Dr. Katharina Eylers for fruitful preliminary work on indium particles on molybdenum for solar applications. For extensive discussions on the topics, we thank Dr. Thomas Teubner, Dr. Setareh Sahedi-Azad, Hans-Peter Schramm and David Uebel.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gibbs, J. W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1878, 3, 108–524; https://doi.org/10.2475/ajs.s3-16.96.441.Search in Google Scholar
2. Wilke, K.-T. Kristallzüchtung; VEB Deutscher Verlag der Wissenschaften: Berlin, 1988.Search in Google Scholar
3. Frank, F. C., van der Merwe, J. H. One-dimensional dislocations. I. Static theory. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1949, 198, 205–216.10.1098/rspa.1949.0095Search in Google Scholar
4. Vollmer, M., Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119, 227.10.1515/zpch-1926-11927Search in Google Scholar
5. Stranski, I. N., Krastanow, L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatsh. Chem. Verw. Teile Anderer Wiss. 1937, 71, 351–364; https://doi.org/10.1007/bf01798103.Search in Google Scholar
6. Drossinos, Y., Kevrekidis, P. G. Classical nucleation theory revisited. Phys. Rev. 2003, 67, 26127; https://doi.org/10.1103/physreve.67.026127.Search in Google Scholar PubMed
7. Ryu, S., Cai, W. Validity of classical nucleation theory for Ising models. Phys. Rev. 2010, 81, 30601; https://doi.org/10.1103/physreve.81.030601.Search in Google Scholar PubMed
8. Lutsko, J. F., Durán-Olivencia, M. A. Classical nucleation theory from a dynamical approach to nucleation. J. Chem. Phys. 2013, 138, 244908; https://doi.org/10.1063/1.4811490.Search in Google Scholar PubMed
9. Fladerer, A. Keimbildung und Tröpfchenwachstum in übersättigtem Argon-Dampf Konstruktion einer kryogenen Nukleationspulskammer; Cuvillier Verlag: Göttingen, 2002.Search in Google Scholar
10. Fladerer, A., Strey, R. Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber. J. Chem. Phys. 2006, 124, 164710; https://doi.org/10.1063/1.2186327.Search in Google Scholar PubMed
11. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863; https://doi.org/10.1103/revmodphys.57.827.Search in Google Scholar
12. Teletzke, G. F., Davis, H. T., Scriven, L. E. Wetting hydrodynamics. Rev. Phys. Appl. 1988, 23, 989–1007; https://doi.org/10.1051/rphysap:01988002306098900.10.1051/rphysap:01988002306098900Search in Google Scholar
13. Monaghan, J. J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759; https://doi.org/10.1088/0034-4885/68/8/r01.Search in Google Scholar
14. Chatzigiannakis, E., Jaensson, N., Vermant, J. Thin liquid films: where hydrodynamics, capillarity, surface stresses, and intermolecular forces meet. Curr. Opin. Colloid Interface Sci. 2021, 101441; https://doi.org/10.1016/j.cocis.2021.101441.Search in Google Scholar
15. Volmer, M., Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119, 277–301; https://doi.org/10.1515/zpch-1926-11927.Search in Google Scholar
16. Kaischew, R. Zur Theorie des Kristallwachstums. Z. Phys. 1936, 102, 684–690; https://doi.org/10.1007/bf01337739.Search in Google Scholar
17. Kaischew, R. Sur la thermodynamique des germes cristallins. Bull. Acad. Sci. Bulg. (Ser. Phys.) 1951, 2, 191.Search in Google Scholar
18. Turnbull, D. Phase changes. Solid State Phys. 1956, 3, 225–306; https://doi.org/10.1016/s0081-1947(08)60134-4.Search in Google Scholar
19. Hillig, W. B., Turnbull, D. Theory of crystal growth in undercooled pure liquids. J. Chem. Phys. 1956, 24, 914; https://doi.org/10.1063/1.1742646.Search in Google Scholar
20. Kaischew, R. Application of the method of medium separation work in the theory of crystal growth and of the formation of crystal nucleus. Fortschr. Mineral. 1960, 38, 7–21.Search in Google Scholar
21. Defay, R., Prigogine, I., Sanfeld, A. Surface thermodynamics. In Plenary and Invited Lectures; Elsevier, 1977, pp. 527–539.10.1016/B978-0-12-404501-9.50043-2Search in Google Scholar
22. Toschev, S. Homogeneous Nucleation; North-Holland Publ Co: Amsterdam, 1973.Search in Google Scholar
23. Toschev, S. Crystal Growth: An Introduction; North-Holland Publ Co: Amsterdam, 1973.Search in Google Scholar
24. Toschev, S. Equilibrium Forms; North-Holland Publ Co: Amsterdam, 1973.Search in Google Scholar
25. Oxtoby, D. W. Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 1992, 4, 7627; https://doi.org/10.1088/0953-8984/4/38/001.Search in Google Scholar
26. Schick, C., Androsch, R., Schmelzer, J. W. P. Homogeneous crystal nucleation in polymers. J. Phys. Condens. Matter 2017, 29, 453002; https://doi.org/10.1088/1361-648x/aa7fe0.Search in Google Scholar PubMed
27. Botsaris, G. D. Secondary nucleation—a review. Ind. Cryst. 1976, 1, 3–22; https://doi.org/10.1007/978-1-4615-7258-9_1.Search in Google Scholar
28. Jun, Y.-S., Kim, D., Neil, C. W. Heterogeneous nucleation and growth of nanoparticles at environmental interfaces. Acc. Chem. Res. 2016, 49, 1681–1690; https://doi.org/10.1021/acs.accounts.6b00208.Search in Google Scholar PubMed
29. de Gennes, P.-G., Brochard-Wyart, F., Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer Science: New York, 2004.10.1007/978-0-387-21656-0Search in Google Scholar
30. Freund, J. B. The atomic detail of a wetting/de-wetting flow. Phys. Fluids 2003, 15, L33–L36; https://doi.org/10.1063/1.1565112.Search in Google Scholar
31. Leroy, F., Borowik, Ł., Cheynis, F., Almadori, Y., Curiotto, S., Trautmann, M., Barbé, J., Müller, P. How to control solid state dewetting: a short review. Surf. Sci. Rep. 2016, 71, 391–409; https://doi.org/10.1016/j.surfrep.2016.03.002.Search in Google Scholar
32. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S. Spinodal dewetting in liquid crystal and liquid metal films. Science 1998, 282, 916 LP–919; https://doi.org/10.1126/science.282.5390.916.Search in Google Scholar PubMed
33. Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S. Droplet based microfluidics. Rep. Prog. Phys. 2012, 75, 016601; https://doi.org/10.1088/0034-4885/75/1/016601.Search in Google Scholar PubMed
34. Wagner, A. R. S., Ellis, S. W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90; https://doi.org/10.1063/1.1753975.Search in Google Scholar
35. Lange, F., Ernst, O., Teubner, T., Richter, C., Schmidbauer, M., Skibitzki, O., Schroeder, T., Schmidt, P., Boeck, T. In-plane growth of germanium nanowires on nanostructured Si(001)/SiO2 substrates. Nano Futures 2020, 4, 35006; https://doi.org/10.1088/2399-1984/ab82a0.Search in Google Scholar
36. Ernst, O. C., Lange, F., Uebel, D., Teubner, T., Boeck, T. Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth. Beilstein J. Nanotechnol. 2020, 2020, 1371–1380; https://doi.org/10.3762/bjnano.11.121.Search in Google Scholar PubMed PubMed Central
37. Schmidt, V., Wittemann, J. V., Senz, S., Gösele, U. Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702; https://doi.org/10.1002/adma.200803754.Search in Google Scholar
38. Goktas, N. I., Wilson, P., Ghukasyan, A., Wagner, D., McNamee, S., LaPierre, R. R. Nanowires for energy: a review. Appl. Phys. Rev. 2018, 5, 41305; https://doi.org/10.1063/1.5054842.Search in Google Scholar
39. Ressel, B., Prince, K. C., Heun, S., Homma, Y. Wetting of Si surfaces by Au–Si liquid alloys. J. Appl. Phys. 2003, 93, 3886–3892; https://doi.org/10.1063/1.1558996.Search in Google Scholar
40. Klimovskaya, A., Sarikov, A., Pedchenko, Y., Voroshchenko, A., Lytvyn, O., Stadnik, A. Study of the formation processes of gold droplet arrays on Si substrates by high temperature anneals. Nanoscale Res. Lett. 2011, 6, 151; https://doi.org/10.1186/1556-276x-6-151.Search in Google Scholar
41. Curiotto, S., Cheynis, F., Leroy, F., Müller, P. Surface diffusion of Au on 3 × 3 Si(111)–Au studied by nucleation-rate and Ostwald-ripening analysis. Surf. Sci. 2016, 647, 8–11; https://doi.org/10.1016/j.susc.2015.11.015.Search in Google Scholar
42. Ernst, O. C., Uebel, D., Kayser, S., Lange, F., Teubner, T., Boeck, T. Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning. Appl. Surf. Sci. Adv. 2021, 3, 100040; https://doi.org/10.1016/j.apsadv.2020.100040.Search in Google Scholar
43. Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252; https://doi.org/10.1007/bf01017860.Search in Google Scholar
44. Lifshitz, I., Slyozov, V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solid. 1961, 19, 35–50; https://doi.org/10.1016/0022-3697(61)90054-3.Search in Google Scholar
45. Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Z. für Elektrochem. Berichte der Bunsengesellschaft für Phys. Chem. 1961, 65, 581–591.10.1002/bbpc.19610650704Search in Google Scholar
46. Schmid, M., Heidmann, B., Ringleb, F., Eylers, K., Ernst, O., Andree, S., Bonse, J., Boeck, T., Krüger, J. Locally grown Cu(In,Ga)Se2 micro islands for concentrator solar cells. Proc. SPIE 2018, 10527, 1052707.Search in Google Scholar
47. Alves, M., Pérez-Rodríguez, A., Dale, P. J., Domínguez, C., Sadewasser, S. Thin-film micro-concentrator solar cells. J. Phys. Energy 2019, 2, 012001; https://doi.org/10.1088/2515-7655/ab4289.Search in Google Scholar
48. Vitos, L., Ruban, A. V., Skriver, H. L., Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202; https://doi.org/10.1016/s0039-6028(98)00363-x.Search in Google Scholar
49. Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., Romeo, A. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: a review. Prog. Mater. Sci. 2020, 110, 100619; https://doi.org/10.1016/j.pmatsci.2019.100619.Search in Google Scholar
50. Ringleb, F., Eylers, K., Teubner, T., Schramm, H.-P., Symietz, C., Bonse, J., Andree, S., Heidmann, B., Schmid, M., Krüger, J. Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses. Appl. Surf. Sci. 2017, 418, 548–553; https://doi.org/10.1016/j.apsusc.2016.11.135.Search in Google Scholar
51. Ringleb, F., Andree, S., Heidmann, B., Bonse, J., Eylers, K., Ernst, O., Boeck, T., Schmid, M., Krüger, J. Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics. Beilstein J. Nanotechnol. 2018, 9, 3025–3038; https://doi.org/10.3762/bjnano.9.281.Search in Google Scholar
52. Young, T. III. An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. Lond. 1805, 95, 65–87.10.1098/rstl.1805.0005Search in Google Scholar
53. Lucaßen, J. Mechanische Substratstukturierung für lokale Indiumabscheidung. PhD thesis; Universität Duisburg-Essen, 2019.Search in Google Scholar
54. Ernst, O. C., Uebel, D., Lange, F., Teubner, T. Verfahren zur Mikrostrukturierung 2020.Search in Google Scholar
55. Shlimak, I., Safarov, V. I., Vagner, I. D. Isotopically engineered silicon silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer. J. Phys. Condens. Matter 2001, 13, 6059.Search in Google Scholar
56. Scappucci, G. Semiconductor materials stacks for quantum dot spin qubits, arXiv preprint arXiv:2102.10897, 2021.Search in Google Scholar
57. Friesen, M., Eriksson, M. A., Coppersmith, S. N. Magnetic field dependence of valley splitting in realistic Si SiGe quantum wells. Appl. Phys. Lett. 2006, 89, 202106; https://doi.org/10.1063/1.2387975.Search in Google Scholar
58. Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł., Sarma, S. D. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 2010, 105, 187602; https://doi.org/10.1103/physrevlett.105.187602.Search in Google Scholar
59. Matthew, J. W., Blakeslee, A. E. Defects in epitaxial multilayers. J. Cryst. Growth 1974, 27, 118; https://doi.org/10.1016/s0022-0248(74)80055-2.Search in Google Scholar
60. People, R., Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for GeSi Si strained-layer heterostructures. Appl. Phys. Lett. 1985, 47, 322–324; https://doi.org/10.1063/1.96206.Search in Google Scholar
61. Kozioł, R., Łapiński, M., Syty, P., Koszelow, D., Sadowski, W., Sienkiewicz, J. E., Kościelska, B. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 2020, 11, 494–507; https://doi.org/10.3762/bjnano.11.40.Search in Google Scholar PubMed PubMed Central
62. Mühlbacher, M., Greczynski, G., Sartory, B., Schalk, N., Lu, J., Petrov, I., Greene, J. E., Hultman, L., Mitterer, C. Enhanced Ti 0.84 Ta 0.16 N diffusion barriers, grown by a hybrid sputtering technique with no substrate heating, between Si (001) wafers and Cu overlayers. Sci. Rep. 2018, 8, 1–9.10.1038/s41598-018-23782-9Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Crystallography in Germany rejuvenated
- Original Papers
- CalcOPP: a program for the calculation of one-particle potentials (OPPs)
- Synthesis and coordination to the coinage metals of a trimethylpyrazolyl substituted 3-arylacetylacetone
- Occupancy disorder in the magnetic topological insulator candidate Mn1−x Sb2+x Te4
- Structural study of anhydrous and hydrated 5-fluorouracil co-crystals with nicotinamide and isonicotinamide
- Synthesis, crystal-structure refinement and properties of bastnaesite-type PrF[CO3], SmF[CO3] and EuF[CO3]
- Crystallographic complexity partition analysis
- The “ferros” of MAPbI3: ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites
- Structure relations in the family of the solid solution Hf x Zr1−x O2
- The crystal structure of single crystalline PrCa4O[BO3]3
- Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt
- Quantum transport and microwave scattering on fractal lattices
- Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research
- Electronic structure of the homologous series of Ruddlesden–Popper phases SrO(SrTiO3) n , (n = 0–3, ∞)
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Crystallography in Germany rejuvenated
- Original Papers
- CalcOPP: a program for the calculation of one-particle potentials (OPPs)
- Synthesis and coordination to the coinage metals of a trimethylpyrazolyl substituted 3-arylacetylacetone
- Occupancy disorder in the magnetic topological insulator candidate Mn1−x Sb2+x Te4
- Structural study of anhydrous and hydrated 5-fluorouracil co-crystals with nicotinamide and isonicotinamide
- Synthesis, crystal-structure refinement and properties of bastnaesite-type PrF[CO3], SmF[CO3] and EuF[CO3]
- Crystallographic complexity partition analysis
- The “ferros” of MAPbI3: ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites
- Structure relations in the family of the solid solution Hf x Zr1−x O2
- The crystal structure of single crystalline PrCa4O[BO3]3
- Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt
- Quantum transport and microwave scattering on fractal lattices
- Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research
- Electronic structure of the homologous series of Ruddlesden–Popper phases SrO(SrTiO3) n , (n = 0–3, ∞)