Home Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research
Article
Licensed
Unlicensed Requires Authentication

Leveraging dewetting models rather than nucleation models: current crystallographic challenges in interfacial and nanomaterials research

Contemporary and prospective opportunities to exploit dewetting theory for energy conversion devices and quantum computing
  • Owen C. Ernst EMAIL logo , Yujia Liu and Torsten Boeck
Published/Copyright: March 7, 2022

Abstract

No scientific model has shaped crystallography as much as the classical nucleation theory (CNT). The majority of all growth processes and particle formation processes are attributed to the CNT. However, alternative descriptions exist that may be better suited to explain material formation under certain conditions. One of these alternatives is the dewetting theory (DWT). To describe the possibilities of DWT in more detail, we selected three material systems for three current application areas: Gold particles on silicon as catalysts for nanowire growth, indium particles on molybdenum as precursor material in novel solar cell concepts, and silicon layers on silicon germanium as potential wells in semiconductor quantum computers. Each of these material systems showed particular advantages of DWT over CNT. For example, the properties of surface particles with high atomic mobility could be described more realistically using DWT. Yet, there were clear indications that the DWT is not yet complete and that further research is needed to complete it. In particular, modern crystallographic challenges could serve this purpose, for example the development of semiconductor quantum computers, in order to re-evaluate known models such as the CNT and DWT and adapt them to the latest state of science and technology. For the time being, this article will give an outlook on the advantages of the DWT today and its potential for future research in crystallography.


Corresponding author: Owen C. Ernst, Leibniz-Institut für Kristallzüchtung, Max-Born Str. 2, 12489 Berlin, Germany, E-mail:

Acknowledgement

The authors would like to thank a number of scientists who assisted in collecting the data, growing the nanostructures or discussing the results. Thanks go to Felix Lange, who grew the gold particles and nanowires for thermoelectrics using MBE. We thank Dr. Franziska Ringleb and Dr. Katharina Eylers for fruitful preliminary work on indium particles on molybdenum for solar applications. For extensive discussions on the topics, we thank Dr. Thomas Teubner, Dr. Setareh Sahedi-Azad, Hans-Peter Schramm and David Uebel.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gibbs, J. W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1878, 3, 108–524; https://doi.org/10.2475/ajs.s3-16.96.441.Search in Google Scholar

2. Wilke, K.-T. Kristallzüchtung; VEB Deutscher Verlag der Wissenschaften: Berlin, 1988.Search in Google Scholar

3. Frank, F. C., van der Merwe, J. H. One-dimensional dislocations. I. Static theory. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1949, 198, 205–216.10.1098/rspa.1949.0095Search in Google Scholar

4. Vollmer, M., Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119, 227.10.1515/zpch-1926-11927Search in Google Scholar

5. Stranski, I. N., Krastanow, L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatsh. Chem. Verw. Teile Anderer Wiss. 1937, 71, 351–364; https://doi.org/10.1007/bf01798103.Search in Google Scholar

6. Drossinos, Y., Kevrekidis, P. G. Classical nucleation theory revisited. Phys. Rev. 2003, 67, 26127; https://doi.org/10.1103/physreve.67.026127.Search in Google Scholar PubMed

7. Ryu, S., Cai, W. Validity of classical nucleation theory for Ising models. Phys. Rev. 2010, 81, 30601; https://doi.org/10.1103/physreve.81.030601.Search in Google Scholar PubMed

8. Lutsko, J. F., Durán-Olivencia, M. A. Classical nucleation theory from a dynamical approach to nucleation. J. Chem. Phys. 2013, 138, 244908; https://doi.org/10.1063/1.4811490.Search in Google Scholar PubMed

9. Fladerer, A. Keimbildung und Tröpfchenwachstum in übersättigtem Argon-Dampf Konstruktion einer kryogenen Nukleationspulskammer; Cuvillier Verlag: Göttingen, 2002.Search in Google Scholar

10. Fladerer, A., Strey, R. Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber. J. Chem. Phys. 2006, 124, 164710; https://doi.org/10.1063/1.2186327.Search in Google Scholar PubMed

11. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863; https://doi.org/10.1103/revmodphys.57.827.Search in Google Scholar

12. Teletzke, G. F., Davis, H. T., Scriven, L. E. Wetting hydrodynamics. Rev. Phys. Appl. 1988, 23, 989–1007; https://doi.org/10.1051/rphysap:01988002306098900.10.1051/rphysap:01988002306098900Search in Google Scholar

13. Monaghan, J. J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759; https://doi.org/10.1088/0034-4885/68/8/r01.Search in Google Scholar

14. Chatzigiannakis, E., Jaensson, N., Vermant, J. Thin liquid films: where hydrodynamics, capillarity, surface stresses, and intermolecular forces meet. Curr. Opin. Colloid Interface Sci. 2021, 101441; https://doi.org/10.1016/j.cocis.2021.101441.Search in Google Scholar

15. Volmer, M., Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119, 277–301; https://doi.org/10.1515/zpch-1926-11927.Search in Google Scholar

16. Kaischew, R. Zur Theorie des Kristallwachstums. Z. Phys. 1936, 102, 684–690; https://doi.org/10.1007/bf01337739.Search in Google Scholar

17. Kaischew, R. Sur la thermodynamique des germes cristallins. Bull. Acad. Sci. Bulg. (Ser. Phys.) 1951, 2, 191.Search in Google Scholar

18. Turnbull, D. Phase changes. Solid State Phys. 1956, 3, 225–306; https://doi.org/10.1016/s0081-1947(08)60134-4.Search in Google Scholar

19. Hillig, W. B., Turnbull, D. Theory of crystal growth in undercooled pure liquids. J. Chem. Phys. 1956, 24, 914; https://doi.org/10.1063/1.1742646.Search in Google Scholar

20. Kaischew, R. Application of the method of medium separation work in the theory of crystal growth and of the formation of crystal nucleus. Fortschr. Mineral. 1960, 38, 7–21.Search in Google Scholar

21. Defay, R., Prigogine, I., Sanfeld, A. Surface thermodynamics. In Plenary and Invited Lectures; Elsevier, 1977, pp. 527–539.10.1016/B978-0-12-404501-9.50043-2Search in Google Scholar

22. Toschev, S. Homogeneous Nucleation; North-Holland Publ Co: Amsterdam, 1973.Search in Google Scholar

23. Toschev, S. Crystal Growth: An Introduction; North-Holland Publ Co: Amsterdam, 1973.Search in Google Scholar

24. Toschev, S. Equilibrium Forms; North-Holland Publ Co: Amsterdam, 1973.Search in Google Scholar

25. Oxtoby, D. W. Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 1992, 4, 7627; https://doi.org/10.1088/0953-8984/4/38/001.Search in Google Scholar

26. Schick, C., Androsch, R., Schmelzer, J. W. P. Homogeneous crystal nucleation in polymers. J. Phys. Condens. Matter 2017, 29, 453002; https://doi.org/10.1088/1361-648x/aa7fe0.Search in Google Scholar PubMed

27. Botsaris, G. D. Secondary nucleation—a review. Ind. Cryst. 1976, 1, 3–22; https://doi.org/10.1007/978-1-4615-7258-9_1.Search in Google Scholar

28. Jun, Y.-S., Kim, D., Neil, C. W. Heterogeneous nucleation and growth of nanoparticles at environmental interfaces. Acc. Chem. Res. 2016, 49, 1681–1690; https://doi.org/10.1021/acs.accounts.6b00208.Search in Google Scholar PubMed

29. de Gennes, P.-G., Brochard-Wyart, F., Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer Science: New York, 2004.10.1007/978-0-387-21656-0Search in Google Scholar

30. Freund, J. B. The atomic detail of a wetting/de-wetting flow. Phys. Fluids 2003, 15, L33–L36; https://doi.org/10.1063/1.1565112.Search in Google Scholar

31. Leroy, F., Borowik, Ł., Cheynis, F., Almadori, Y., Curiotto, S., Trautmann, M., Barbé, J., Müller, P. How to control solid state dewetting: a short review. Surf. Sci. Rep. 2016, 71, 391–409; https://doi.org/10.1016/j.surfrep.2016.03.002.Search in Google Scholar

32. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S. Spinodal dewetting in liquid crystal and liquid metal films. Science 1998, 282, 916 LP–919; https://doi.org/10.1126/science.282.5390.916.Search in Google Scholar PubMed

33. Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S. Droplet based microfluidics. Rep. Prog. Phys. 2012, 75, 016601; https://doi.org/10.1088/0034-4885/75/1/016601.Search in Google Scholar PubMed

34. Wagner, A. R. S., Ellis, S. W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90; https://doi.org/10.1063/1.1753975.Search in Google Scholar

35. Lange, F., Ernst, O., Teubner, T., Richter, C., Schmidbauer, M., Skibitzki, O., Schroeder, T., Schmidt, P., Boeck, T. In-plane growth of germanium nanowires on nanostructured Si(001)/SiO2 substrates. Nano Futures 2020, 4, 35006; https://doi.org/10.1088/2399-1984/ab82a0.Search in Google Scholar

36. Ernst, O. C., Lange, F., Uebel, D., Teubner, T., Boeck, T. Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth. Beilstein J. Nanotechnol. 2020, 2020, 1371–1380; https://doi.org/10.3762/bjnano.11.121.Search in Google Scholar PubMed PubMed Central

37. Schmidt, V., Wittemann, J. V., Senz, S., Gösele, U. Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702; https://doi.org/10.1002/adma.200803754.Search in Google Scholar

38. Goktas, N. I., Wilson, P., Ghukasyan, A., Wagner, D., McNamee, S., LaPierre, R. R. Nanowires for energy: a review. Appl. Phys. Rev. 2018, 5, 41305; https://doi.org/10.1063/1.5054842.Search in Google Scholar

39. Ressel, B., Prince, K. C., Heun, S., Homma, Y. Wetting of Si surfaces by Au–Si liquid alloys. J. Appl. Phys. 2003, 93, 3886–3892; https://doi.org/10.1063/1.1558996.Search in Google Scholar

40. Klimovskaya, A., Sarikov, A., Pedchenko, Y., Voroshchenko, A., Lytvyn, O., Stadnik, A. Study of the formation processes of gold droplet arrays on Si substrates by high temperature anneals. Nanoscale Res. Lett. 2011, 6, 151; https://doi.org/10.1186/1556-276x-6-151.Search in Google Scholar

41. Curiotto, S., Cheynis, F., Leroy, F., Müller, P. Surface diffusion of Au on 3 × 3 Si(111)–Au studied by nucleation-rate and Ostwald-ripening analysis. Surf. Sci. 2016, 647, 8–11; https://doi.org/10.1016/j.susc.2015.11.015.Search in Google Scholar

42. Ernst, O. C., Uebel, D., Kayser, S., Lange, F., Teubner, T., Boeck, T. Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning. Appl. Surf. Sci. Adv. 2021, 3, 100040; https://doi.org/10.1016/j.apsadv.2020.100040.Search in Google Scholar

43. Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252; https://doi.org/10.1007/bf01017860.Search in Google Scholar

44. Lifshitz, I., Slyozov, V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solid. 1961, 19, 35–50; https://doi.org/10.1016/0022-3697(61)90054-3.Search in Google Scholar

45. Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Z. für Elektrochem. Berichte der Bunsengesellschaft für Phys. Chem. 1961, 65, 581–591.10.1002/bbpc.19610650704Search in Google Scholar

46. Schmid, M., Heidmann, B., Ringleb, F., Eylers, K., Ernst, O., Andree, S., Bonse, J., Boeck, T., Krüger, J. Locally grown Cu(In,Ga)Se2 micro islands for concentrator solar cells. Proc. SPIE 2018, 10527, 1052707.Search in Google Scholar

47. Alves, M., Pérez-Rodríguez, A., Dale, P. J., Domínguez, C., Sadewasser, S. Thin-film micro-concentrator solar cells. J. Phys. Energy 2019, 2, 012001; https://doi.org/10.1088/2515-7655/ab4289.Search in Google Scholar

48. Vitos, L., Ruban, A. V., Skriver, H. L., Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202; https://doi.org/10.1016/s0039-6028(98)00363-x.Search in Google Scholar

49. Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., Romeo, A. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: a review. Prog. Mater. Sci. 2020, 110, 100619; https://doi.org/10.1016/j.pmatsci.2019.100619.Search in Google Scholar

50. Ringleb, F., Eylers, K., Teubner, T., Schramm, H.-P., Symietz, C., Bonse, J., Andree, S., Heidmann, B., Schmid, M., Krüger, J. Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses. Appl. Surf. Sci. 2017, 418, 548–553; https://doi.org/10.1016/j.apsusc.2016.11.135.Search in Google Scholar

51. Ringleb, F., Andree, S., Heidmann, B., Bonse, J., Eylers, K., Ernst, O., Boeck, T., Schmid, M., Krüger, J. Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics. Beilstein J. Nanotechnol. 2018, 9, 3025–3038; https://doi.org/10.3762/bjnano.9.281.Search in Google Scholar

52. Young, T. III. An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. Lond. 1805, 95, 65–87.10.1098/rstl.1805.0005Search in Google Scholar

53. Lucaßen, J. Mechanische Substratstukturierung für lokale Indiumabscheidung. PhD thesis; Universität Duisburg-Essen, 2019.Search in Google Scholar

54. Ernst, O. C., Uebel, D., Lange, F., Teubner, T. Verfahren zur Mikrostrukturierung 2020.Search in Google Scholar

55. Shlimak, I., Safarov, V. I., Vagner, I. D. Isotopically engineered silicon silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer. J. Phys. Condens. Matter 2001, 13, 6059.Search in Google Scholar

56. Scappucci, G. Semiconductor materials stacks for quantum dot spin qubits, arXiv preprint arXiv:2102.10897, 2021.Search in Google Scholar

57. Friesen, M., Eriksson, M. A., Coppersmith, S. N. Magnetic field dependence of valley splitting in realistic Si SiGe quantum wells. Appl. Phys. Lett. 2006, 89, 202106; https://doi.org/10.1063/1.2387975.Search in Google Scholar

58. Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł., Sarma, S. D. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 2010, 105, 187602; https://doi.org/10.1103/physrevlett.105.187602.Search in Google Scholar

59. Matthew, J. W., Blakeslee, A. E. Defects in epitaxial multilayers. J. Cryst. Growth 1974, 27, 118; https://doi.org/10.1016/s0022-0248(74)80055-2.Search in Google Scholar

60. People, R., Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for GeSi Si strained-layer heterostructures. Appl. Phys. Lett. 1985, 47, 322–324; https://doi.org/10.1063/1.96206.Search in Google Scholar

61. Kozioł, R., Łapiński, M., Syty, P., Koszelow, D., Sadowski, W., Sienkiewicz, J. E., Kościelska, B. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 2020, 11, 494–507; https://doi.org/10.3762/bjnano.11.40.Search in Google Scholar PubMed PubMed Central

62. Mühlbacher, M., Greczynski, G., Sartory, B., Schalk, N., Lu, J., Petrov, I., Greene, J. E., Hultman, L., Mitterer, C. Enhanced Ti 0.84 Ta 0.16 N diffusion barriers, grown by a hybrid sputtering technique with no substrate heating, between Si (001) wafers and Cu overlayers. Sci. Rep. 2018, 8, 1–9.10.1038/s41598-018-23782-9Search in Google Scholar

Received: 2021-12-20
Accepted: 2022-02-19
Published Online: 2022-03-07
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2078/html
Scroll to top button