Home Quantum transport and microwave scattering on fractal lattices
Article
Licensed
Unlicensed Requires Authentication

Quantum transport and microwave scattering on fractal lattices

  • Krishnasamy Subramaniam , Matthias Zschornak EMAIL logo and Sibylle Gemming
Published/Copyright: March 24, 2022

Abstract

Studying the wave-particle nature of electrons in different ways has lead to many fundamental discoveries. Particularly, the dimensionality dependent electronic behavior in the Luttinger Liquid (1D), Quantum Hall (2D) and non-interacting Fermi Liquid (3D) regimes have already revolutionized our understanding of the mechanisms behind quantum electronics. In this work, the theoretical and experimental studies focus on the non-integer dimension represented by an sp2-carbon-based Sierpinski triangular structure with a 1.58D space occupancy. In the tight-binding approach, the spectral distribution of electronic states of such a structure exhibits distinct peak patterns, which are well-separated by gaps. Through quantum transport simulation, the conductance of electrons in 1.58D was studied. Both delocalized, conducting and localized, non-conducting states identified, which differ from the established features of both the fully 2D graphene sheet and 1D carbon nanotubes. In microwave scattering measurements on an adequate experimental setting and the respective simulations on the Sierpinski triangle, the obtained diffraction patterns showed interesting peculiarities such as a reduced number of minima and magic angle, next to diffraction regions of high and low intensity, as well as forbidden regions. The fractal geometry of the structure affects the propagation of waves by manipulating the way they interact with each other which results in structural metamaterial-like interference characteristics, decreasing or amplifying the transmitted or reflected signals, or blocking the transport completely.


Corresponding author: Matthias Zschornak, TU Chemnitz, Institute of Physics, Reichenhainer Straße 70, D-09126 Chemnitz, Germany; and TU Bergakademie Freiberg, Leipziger Straße 23, D-09596 Freiberg, Germany, E-mail:

Funding source: DFG

Award Identifier / Grant number: 405595647

Award Identifier / Grant number: 409743569

Award Identifier / Grant number: 442646446

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge funding by the DFG within the projects DFG 405595647 (GE 1202/12-1), DFG 409743569 (ZS 120/1-1), and DFG 442646446 (ZS 120/5-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

The electronic structure was created using Pybinding with in-lead connections at the bottom and the out-connection at the top. The in-lead connections have multiple paths to inject electrons and the out-lead connection does not have multiple paths for electrons to leave. The transport calculations are achieved by using Kwant, by exporting the complete structure with in-lead and out-lead connections from Pybinding to Kwant.

Figure A.1: 
(a) The electronic structure for iteration 3 of the ST with in-lead as lead 0 and out-lead as lead 1 (at the left), (b) The experimental setup with initial scattering angle (



θ
=
0
°



$\theta =0^{\circ} $



) for the sample orientation 




0
°




${0}^{^{\circ} }$



 (at the right).
Figure A.1:

(a) The electronic structure for iteration 3 of the ST with in-lead as lead 0 and out-lead as lead 1 (at the left), (b) The experimental setup with initial scattering angle ( θ = 0 ° ) for the sample orientation 0 ° (at the right).

The experimental setup [39] has microwave transmitter (at the top left) and receiver (at the top right) with a horn shaped outlet, where the transmitter and the receiver are free to move from 0 to 90° together in a coupled mode. The microwave transmitter connected to the power supply setup (at the bottom left) for generating microwave frequencies and the received signals are processed using the receiver setup (at the bottom right) and then measured using a multimeter. The sample was placed in the center which is free to rotate from 0 to 360°.

References

1. Mandelbrot, B. B. The Fractal Geometry of Nature, Vol. 1; WH Freeman and Company: New York, 1982.Search in Google Scholar

2. Fan, J. A., Yeo, W. H, Su, Y., Hattori, Y., Lee, W., Jung, S. Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R. J., Huang, Y., Rogers, J. A. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266; https://doi.org/10.1038/ncomms4266.Search in Google Scholar PubMed

3. Wallace, G. Q., Lagugné-Labarthet, F. Advancements in fractal plasmonics: structures, optical properties, and applications. Analyst 2019, 144, 13–30; https://doi.org/10.1039/C8AN01667D.Search in Google Scholar PubMed

4. Baliarda, C., Romeu, J., Cardama, A. The Koch monopole: a small fractal antenna. IEEE Trans. Antenn. Propag. 2000, 48, 1773–1781; https://doi.org/10.1109/8.900236.Search in Google Scholar

5. Thekkekara, L. V., Gu, M. Bioinspired fractal electrodes for solar energy storages. Sci. Rep. 2017, 7, 45585.10.1038/srep45585Search in Google Scholar PubMed PubMed Central

6. Pai, S., Prem, A. Topological states on fractal lattices. Phys. Rev. B 2019, 100, 155135; https://doi.org/10.1103/PhysRevB.100.155135.Search in Google Scholar

7. Agarwala, A., Pai, S., Shenoy, V. B. Fractalized Metals, 2018. arXiv preprint arXiv:1803.01404v1.Search in Google Scholar

8. Brzezińska, M., Cook, A. M., Neupert, T. Topology in the Sierpiński-Hofstadter problem. Phys. Rev. B 2018, 98, 205116; https://doi.org/10.1103/PhysRevB.98.205116.Search in Google Scholar

9. Wang, X. R. Localization in fractal spaces: exact results on the Sierpinski gasket. Phys. Rev. B 1995, 51, 9310–9313; https://doi.org/10.1103/PhysRevB.51.9310.Search in Google Scholar

10. Westerhout, T., van Veen, E., Katsnelson, M. I., Yuan, S. Plasmon confinement in fractal quantum systems. Phys. Rev. B 2018, 97, 205434; https://doi.org/10.1103/PhysRevB.97.205434.Search in Google Scholar

11. Wang, H., Zhang, X., Jiang, Z., Wang, Y., Hou, S. Electronic confining effects in Sierpiński triangle fractals. Phys. Rev. B 2018, 97, 115451; https://doi.org/10.1103/PhysRevB.97.115451.Search in Google Scholar

12. Fremling, M., van Hooft, M., Smith, C. M., Fritz, L. Existence of robust edge currents in Sierpiński fractals. Phys. Rev. Res., 2020, 2, 013044.10.1103/PhysRevResearch.2.013044Search in Google Scholar

13. van Veen, E., Yuan, S., Katsnelson, M. I., Polini, M., Tomadin, A. Quantum transport in Sierpinski carpets. Phys. Rev. B 2016, 93, 115428; https://doi.org/10.1103/PhysRevB.93.115428.Search in Google Scholar

14. Kempkes, S. N., Slot, M. R., Freeney, S. E., Zevenhuizen, S. J. M., Vanmaekelbergh, D., Swart, I., Smith, C. M. Design and Characterization of Electronic Fractals, 2018. arXiv preprint arXiv:1803.04698v1.10.1038/s41567-018-0328-0Search in Google Scholar PubMed PubMed Central

15. Zhang, X., Li, N., Liu, L., Gu, G., Li, C., Tang, H., Peng, L., Hou, S., Wang, Y. Robust Sierpiński triangle fractals on symmetry-mismatched ag(100). Chem. Commun. 2016, 52, 10578–10581; https://doi.org/10.1039/C6CC04879J.Search in Google Scholar PubMed

16. Newkome, G. R., Wang, P., Moorefield, C. N., Cho, T. J., Mohapatra, P. P., Li, S., Hwang, S.-H., Lukoyanova, O., Echegoyen, L., Palagallo, J. A., Iancu, V., Hla, S.-W. Nanoassembly of a fractal polymer: a molecular Sierpinski hexagonal gasket. Science 2006, 312, 1782–1785; https://doi.org/10.1126/science.1125894.Search in Google Scholar PubMed

17. De Nicola, F., Puthiya Purayil, N. S., Spirito, D., Miscuglio, M., Tantussi, F., Tomadin, A., De Angelis, F., Polini, M., Krahne, R., Pellegrini, V. Multiband plasmonic Sierpinski carpet fractal antennas. ACS Photonics 2018, 5, 2418–2425; https://doi.org/10.1021/acsphotonics.8b00186.Search in Google Scholar

18. Venneri, F., Costanzo, S., Di Massa, G. Fractal-shaped metamaterial absorbers for multireflections mitigation in the uhf band. IEEE Antenn. Wireless Propag. Lett. 2018, 17, 255–258; https://doi.org/10.1109/LAWP.2017.2783943.Search in Google Scholar

19. Genzor, J., Gendiar, A., Nishino, T. Phase transition of the Ising model on a fractal lattice. Phys. Rev. E 2016, 93, 012141; https://doi.org/10.1103/PhysRevE.93.012141.Search in Google Scholar PubMed

20. Anacker, L. W., Kopelman, R. Steady-state chemical kinetics on fractals: segregation of reactants. Phys. Rev. Lett. 1987, 58, 289–291; https://doi.org/10.1103/PhysRevLett.58.289.Search in Google Scholar PubMed

21. Maddox, J. New ways with matter/antimatter. Nature 1987, 326, 327.10.1038/326327a0Search in Google Scholar

22. Steurer, W. Quasicrystals: what do we know? What do we want to know? What can we know? Acta Crystallogr. A 2018, 74, 1–11.10.1107/S2053273317016540Search in Google Scholar PubMed PubMed Central

23. Pal, B., Saha, K. Flat bands in fractal-like geometry. Phys. Rev. B 2018, 97, 195101; https://doi.org/10.1103/PhysRevB.97.195101.Search in Google Scholar

24. Gordon, J. M., Goldman, A. M., Maps, J., Costello, D., Tiberio, R., Whitehead, B. Superconducting-normal phase boundary of a fractal network in a magnetic field. Phys. Rev. Lett. 1986, 56, 2280–2283; https://doi.org/10.1103/PhysRevLett.56.2280.Search in Google Scholar PubMed

25. Kempkes, S., Slot, M., van Den Broeke, J., Capiod, P., Benalcazar, W., Vanmaekelbergh, D., Bercioux, D., Swart, I., Smith, C. M. Robust zero-energy modes in an electronic higher-order topological insulator. Nat. Mater. 2019, 18, 1292–1297.10.1038/s41563-019-0483-4Search in Google Scholar PubMed

26. König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkmap, L. W., Qi, X.-L., Zhang, S.-C. Quantum spin hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770; https://doi.org/10.1126/science.1148047.Search in Google Scholar PubMed

27. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505; https://doi.org/10.1103/PhysRev.109.1492.Search in Google Scholar

28. Ray, K., Anathavel, S. P., Waldeck, D. H., Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816; https://doi.org/10.1126/science.283.5403.814.Search in Google Scholar PubMed

29. Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 1963, 4, 1154–1162; https://doi.org/10.1063/1.1704046.Search in Google Scholar

30. Klitzing, K. v., Dorda, G., Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 1980, 45, 494.10.1103/PhysRevLett.45.494Search in Google Scholar

31. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669; https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed

32. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1957, 1, 223–231; https://doi.org/10.1147/rd.13.0223.Search in Google Scholar

33. Pendry, J., Holden, A., Robbins, D., Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theor. Tech. 1999, 47, 2075–2084; https://doi.org/10.1109/22.798002.Search in Google Scholar

34. Pendry, J. B., Holden, A. J., Stewart, W. J., Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776; https://doi.org/10.1103/PhysRevLett.76.4773.Search in Google Scholar PubMed

35. Moldovan, D., Anđelković, M., Peeters, F. pybinding v0.9.4: a python package for tight-binding calculations, 2017.Search in Google Scholar

36. Groth, C. W., Wimmer, M., Akhmerov, A. R., Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 2014, 16, 063065; https://doi.org/10.1088/1367-2630/16/6/063065.Search in Google Scholar

37. Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., Koster, J. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 2001, 23, 15–41.10.1137/S0895479899358194Search in Google Scholar

38. Mezzadri, F. How to generate random matrices from the classical compact groups. Not. Am. Math. Soc. 2007, 54, 592–604.Search in Google Scholar

39. Dave. Griffith, Eric. Ayars. Instruction Manual and Experiment Guide for the PASCO Scientific Model WA-9314B: Microwave Optics Manual (012-04630G); PASCO Scientific. www.pasco.com, 2015.Search in Google Scholar

40. Huygens, C. Traité de la lumiére, où sont expliquées les causes de ce qui luy arrive dans la reflexion, et dans la refraction: et particulierement dans l’étrange refraction du cristal d’Islande: avec un discours de la cause de la pesanteur, Vol. 1. chez Pierre vander Aa; marchand libraire, 1885.Search in Google Scholar

41. Pretko, M., Chen, X., You, Y. Fracton Phases of Matter, 2020. arXiv preprint arXiv:2001.01722v1.10.1142/S0217751X20300033Search in Google Scholar

42. Haah, J. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 2011, 83, 042330; https://doi.org/10.1103/PhysRevA.83.042330.Search in Google Scholar

43. C. Castelnovo and C. Chamon. Topological quantum glassiness. arXiv preprint arXiv:1108.2051, 2011.10.1080/14786435.2011.609152Search in Google Scholar

44. Rüeger, J. M. Refractive index formulae for radio waves. In Integration of Techniques and Corrections to Achieve Accurate Engineering; FIG XXII International Congress: Washington, DC, 2002.Search in Google Scholar

45. Fenske, K., Misra, D. Dielectric materials at microwave frequencies. Blood 2000, 58, 0–27.Search in Google Scholar

Received: 2021-11-29
Accepted: 2022-02-16
Published Online: 2022-03-24
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2070/html
Scroll to top button