The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
-
Christian Paulsen
, Jutta Kösters , Stefan Seidel , Yoshiki Kuwata , Hisashi Kotegawa , Hideki Tou , Hitoshi Sugawara , Hisatomo Harima and Rainer Pöttgen
Abstract
The equiatomic metal-rich phosphide NbCrP shows a structural phase transition around 125 K. The structures of the high- and low-temperature modifications were refined from single crystal X-ray diffractometer data of an un-twinned crystal: TiNiSi type, Pnma, a = 619.80(2), b = 353.74(4), c = 735.24(6) pm, wR = 0.0706, 288 F 2 values, 20 variables at 240 K and P121/c1, a = 630.59(3), b = 739.64(4), c = 933.09(5) pm, β = 132.491(6)°, wR = 0.0531, 1007 F 2 values, 57 variables at 90 K. The structural phase transition is of a classical Peierls type. The equidistant chromium chain in HT-NbCrP (353.7 pm Cr–Cr) splits pairwise into shorter (315.2 pm) and longer (373.2 pm) Cr–Cr distances. This goes along with a strengthening of Cr–P bonding. The superstructure formation is discussed on the basis of a group–subgroup scheme. Electronic structure calculations show a lifting of band degeneracy. Protection of the non-symmorphic symmetry of space group Pnma is crucial for the phase transition. The estimated charge modulation is consistent with the interpretation as Peierls transition.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar
2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar
3. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Search in Google Scholar
4. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar
5. Landrum, G. A., Hoffmann, R., Evers, J., Boysen, H. Inorg. Chem. 1998, 37, 5754–5763; https://doi.org/10.1021/ic980223e.Search in Google Scholar
6. Jeitschko, W. Acta Crystallogr. 1968, B24, 930–934; https://doi.org/10.1107/s0567740868003432.Search in Google Scholar
7. Jeitschko, W., Altmeyer, R. O. Z. Naturforsch. 1990, 45b, 947–951; https://doi.org/10.1515/znb-1990-0705.Search in Google Scholar
8. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183.10.1107/S0108767384000416Search in Google Scholar
9. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Search in Google Scholar
10. Dörrscheidt, W., Niess, N., Schäfer, H. Z. Naturforsch. 1977, 32b, 985–988.10.1515/znb-1977-0905Search in Google Scholar
11. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar
12. Prots’ Yu, M., Pöttgen, R., Niepmann, D., Wolff, M., Jeitschko, W. J. Solid State Chem. 1999, 142, 400–408; https://doi.org/10.1006/jssc.1998.8055.Search in Google Scholar
13. Canepa, F., Manfrinetti, P., Pani, M., Palenzona, A. J. Alloys Compd. 1996, 234, 225–230; https://doi.org/10.1016/0925-8388(95)02037-3.Search in Google Scholar
14. Lomnitskaya, Y. F., Zakharets, L. I., Kondratyuk, G. D. Inorg. Mater. 1988, 24, 505–509.Search in Google Scholar
15. Kuwata, Y., Kotegawa, H., Tou, H., Harima, H., Ding, Q.-P., Takeda, K., Hayashi, J., Matsuoka, E., Sugawara, H., Sakurai, T., Ohta, H., Furukawa, Y. Phys. Rev. B 2020, 102, 205110; https://doi.org/10.1103/physrevb.102.205110.Search in Google Scholar
16. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996–7023; https://doi.org/10.1002/anie.200462170.Search in Google Scholar PubMed
17. Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955.Search in Google Scholar
18. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; VCH Publishers: Weinheim, 1988.10.21236/ADA196638Search in Google Scholar
19. Burdett, J. K. Chemical Bonding in Solids; Oxford University Press: Oxford, 1995.Search in Google Scholar
20. Whangbo, M.-H. J. Chem. Phys. 1981, 75, 4983–4996; https://doi.org/10.1063/1.441887.Search in Google Scholar
21. Burdett, J. K., Lee, S. J. Am. Chem. Soc. 1983, 105, 1079–1083; https://doi.org/10.1021/ja00343a001.Search in Google Scholar
22. Meyer, H.-J. Festkörperchemie. In Riedel – Moderne Anorganische Chemie; Janiak, C., Meyer, H.-J., Gudat, D., Kurz, P., Eds.5th ed.; De Gruyter: Berlin, 2018. Chapter 2.10.1515/9783110441635-002Search in Google Scholar
23. Sakamoto, I., Chen, G. F., Ohara, S., Harima, H., Maruno, S. Proceedings of the 4th international conference on f-elements. J. Alloys Compd. 2001, 623, 323–324.10.1016/S0925-8388(01)01193-8Search in Google Scholar
24. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
25. Petříček, V., Dušek, M., Palatinus, L. JANA2006. The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar
26. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
27. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar
28. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar
29. Müller, U. International Tables for Crystallography, Vol. A1, Symmetry Relations between Space Groups; John Wiley & Sons: Chichester, UK, 2010.Search in Google Scholar
30. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar
31. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar
32. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1653–1682; https://doi.org/10.1002/hlca.200390140.Search in Google Scholar
33. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1683–1708; https://doi.org/10.1002/hlca.200390141.Search in Google Scholar
34. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar
35. Kuz’ma, Y., Chykhrij, S. Phosphides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds.; Elsevier Science: Amsterdam, Vol. 23, 1996; pp 285–433. Chapter 156.10.1016/S0168-1273(96)23007-7Search in Google Scholar
36. Chykhrij, S. I. Pol. J. Chem. 1999, 73, 1595–1611.Search in Google Scholar
37. Pöttgen, R., Hönle, W., von Schnering, H. G. Phosphides: Solid State Chemistry. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed. Wiley: New York, Vol. VII, 2nd ed., 2005; pp. 4255–4308.10.1002/9781119951438.eibc0170Search in Google Scholar
38. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
39. Jeitschko, W., Brink, R. Z. Naturforsch. 1992, 47b, 192–196.Search in Google Scholar
40. Rundqvist, S. Acta Chem. Scand. 1966, 20, 2427–2434; https://doi.org/10.3891/acta.chem.scand.20-2427.Search in Google Scholar
41. Charki, F., Députier, S., Bénard-Rocherullé, P., Guérin, R., Bouayed, M., Le Beuze, A., Saillard, J. Y. Solid State Sci. 1999, 1, 607–622; https://doi.org/10.1016/s1293-2558(00)80112-0.Search in Google Scholar
42. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
43. Duwez, P. E., Martens, H. Trans. Am. Inst. Min. Metall. Pet. Eng. 1952, 194, 72–74; https://doi.org/10.1007/bf03397652.Search in Google Scholar
44. Touzani, R. St., Fokwa, B. P. T. J. Solid State Chem. 2014, 211, 227–234; https://doi.org/10.1016/j.jssc.2013.10.013.Search in Google Scholar
45. Touzani, R. S., Rehorn, C. W. G., Fokwa, B. P. T. Comput. Mater. Sci. 2015, 104, 52–59; https://doi.org/10.1016/j.commatsci.2015.03.036.Search in Google Scholar
46. Touzani, R. S., Mbarki, M., Chen, X., Fokwa, B. P. T. Eur. J. Inorg. Chem. 2016, 4104–4110; https://doi.org/10.1002/ejic.201600689.Search in Google Scholar
47. van Smaalen, S. Acta Crystallogr 2005, A61, 51–61; https://doi.org/10.1107/s0108767304025437.Search in Google Scholar PubMed
48. Graf, C., Assoud, A., Mayasree, O., Kleinke, H. Molecules 2009, 14, 3115–3131; https://doi.org/10.3390/molecules14093115.Search in Google Scholar PubMed PubMed Central
49. Pham, J., Miller, G. J. Inorg. Chem. 2018, 57, 4039–4049; https://doi.org/10.1021/acs.inorgchem.8b00214.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide