Home Physical Sciences Crystal structure analysis and supramolecular association in ethyl N-[amino(iminio)methyl]carbamate dichloride hemi-hydrate
Article
Licensed
Unlicensed Requires Authentication

Crystal structure analysis and supramolecular association in ethyl N-[amino(iminio)methyl]carbamate dichloride hemi-hydrate

  • Christiana Bamigboye , Hanna S. Abbo , Huey Chong Kwong , Sang Loon Tan , Edward R.T. Tiekink EMAIL logo , Fadhil S. Kamounah and Salam J.J. Titinchi EMAIL logo
Published/Copyright: June 14, 2021

Abstract

X-ray crystallography on [EtOC(=O)N(H)C(=N+H2)NH2]Cl·½H2O (1) shows the asymmetric unit to comprise two independent cations, two chloride anions and crystal water. The main conformational difference between the cations is seen in the relative orientation of the ethyl groups; geometry-optimisation confirms the all-trans conformation is the most stable. The remaining parts of the cations are co-planar and feature intramolecular N–H···O(carbonyl) hydrogen bonds. An analysis of the C–N bonds suggests substantial delocalisation of the positive charge over the CN3 atoms. In the crystal, columns comprising the first independent cation are surrounded by four columns of the second cation within a network of water-O–H···Cl, N–H···Cl and N–H···O(water, carbonyl) hydrogen bonds, many of which are charge-assisted. The packing has been further investigated by Hirshfeld surface analysis, molecular electrostatic potential and interaction energy calculations. The charge-assisted N–H···Cl hydrogen bonds are significantly stronger than the water-O–H···Cl interactions consistent the distribution of the positive charge over the CN3 atoms.


Corresponding authors: Salam J.J. Titinchi, Department of Chemistry, University of the Western Cape, Cape Town, South Africa, E-mail: ; and Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. GRTIN-IRG-01-2021.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nencki, M. Über die Guanidinderivate. Ber. Dtsch. Chem. Ges. 1874, 7, 1584–1593; https://doi.org/10.1002/cber.187400702199.Search in Google Scholar

2. Basterfield, S., Paynter, L. E. Studies in urethans I. Mono- and dicarbethoxy-guanidines; dicarbethoxy-ethyl-iso-urea. J. Am. Chem. Soc. 1926, 48, 2176–2179; https://doi.org/10.1021/ja01419a026.Search in Google Scholar

3. Kawano, K., Odo, K. Synthesis of guanyl-O-alkylisourea and its reactions. Nippon Kagaku Zasshi 1961, 82, 1672–1675; https://doi.org/10.1246/nikkashi1948.82.12_1672.Search in Google Scholar

4. Tahir, M. N., Muir, C., Danish, M., Tariq, M. I., Ülkü, D. Bis[diamino(ethoxycarbonylamino)methylium] sulfate. Acta Crystallogr. E: Struct. Rep. Online 2009, 65, o785; https://doi.org/10.1107/s160053680900912x.Search in Google Scholar

5. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. The Cambridge structural database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar

6. Scheindlin, S. Episodes in the story of physostigmine. Mol. Interv. 2010, 10, 4–10; https://doi.org/10.1124/mi.10.1.1.Search in Google Scholar

7. Gupta, R. C. Toxicology of Organophosphate and Carbamate Compounds; Academic Press: London, 2006.Search in Google Scholar

8. Selva, M., Tundo, P., Perosa, A. The synthesis of alkyl carbamates from primary aliphatic amines and dialkyl carbonates in supercritical carbon dioxide. Tetrahedron Lett. 2002, 43, 1217–1219; https://doi.org/10.1016/s0040-4039(01)02390-5.Search in Google Scholar

9. Ghosh, A. K., Brindisi, M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015, 58, 2895–2940; https://doi.org/10.1021/jm501371s.Search in Google Scholar PubMed PubMed Central

10. Woodard & Curran, Inc. Methods for treating wastewaters from industry. In Industrial Waste Treatment Handbook, 2nd ed.; Woodard & Curran, Inc., Eds.; Butterworth-Heinemann: Burlington, 2006; pp. 149–334.10.1016/B978-075067963-3/50009-6Search in Google Scholar

11. Weber, J. V., Sharypov, V. I. Ethyl carbamate in foods and beverages: a review. Environ. Chem. Lett. 2009, 7, 233–247; https://doi.org/10.1007/s10311-008-0168-8.Search in Google Scholar

12. Jäger, P., Rentzea, C. N., Kieczka, H. Carbamates and carbamoyl chlorides. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley VCH: Weinheim, 2011, pp. 149–334.10.1002/14356007.a05_051Search in Google Scholar

13. Pinner, A., Klein, F. Umwandlung der Nitrile in Imide. Ber. Dtsch. Chem. Ges. 1878, 10, 1889–1897.10.1002/cber.187701002154Search in Google Scholar

14. Pfaff, D., Nemecek, G., Podlech, J. A. Lewis acid-promoted Pinner reaction. Beilstein J. Org. Chem. 2013, 9, 1572–1577; https://doi.org/10.3762/bjoc.9.179.Search in Google Scholar PubMed PubMed Central

15. Pfaff, D., Nemecek, G., Podlech, J. A. Hydrogen chloride-free Pinner reaction promoted by Lewis acids. Helv. Chim. Acta 2012, 95, 1851–1856; https://doi.org/10.1002/hlca.201200435.Search in Google Scholar

16. Saint & Sadabs; Bruker: Madison, WI, USA, 2012.Search in Google Scholar

17. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. A, Found. Crystallogr. 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

18. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C, Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

19. Farrugia, L. J. Wingx and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

20. Brandenburg, K. Diamond. Crystal Impact GbR: Bonn, Germany, 2006.Search in Google Scholar

21. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. E: Crystallogr. Commun. 2020, 76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

22. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., PeraltaJr., J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, Connecticut, USA, 2016.Search in Google Scholar

23. Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69–89; https://doi.org/10.1103/revmodphys.23.69.Search in Google Scholar

24. Binkley, J. S., Pople, J. A., Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 1980, 102, 939–947; https://doi.org/10.1021/ja00523a008.Search in Google Scholar

25. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652; https://doi.org/10.1063/1.464913.Search in Google Scholar

26. McLean, A. D., Chandler, G. S. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11-18. J. Chem. Phys. 1980, 72, 5639–5648; https://doi.org/10.1063/1.438980.Search in Google Scholar

27. Raghavachari, K., Binkley, J. S., Seeger, R., Pople, J. A. Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J. Chem. Phys. 1980, 72, 650–654.10.1063/1.438955Search in Google Scholar

28. Glendening, E. D., Reed, A. E., Carpenter, J. E., Weinhold, F. NBO (version 3.1); Theoretical Chemistry Institute: University of Wisconsin: Madison, USA, 1998.Search in Google Scholar

29. Reed, A. E., Curtiss, L. A., Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926; https://doi.org/10.1021/cr00088a005.Search in Google Scholar

30. Spackman, M. A., Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar

31. Spackman, M. A., McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Search in Google Scholar

32. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. CrystalExplorer, (version 17.5); University of Western Australia: Western Australia, Australia, 2017.Search in Google Scholar

33. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E: Struct. Rep. Online 2019, 75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

34. Spackman, M. A., McKinnon, J. J., Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 2008, 10, 377–388.10.1039/b715227bSearch in Google Scholar

35. Jotani, M. M., Wardell, J. L., Tiekink, E. R. T. Supramolecular association in the triclinic (Z′=1) and monoclinic (Z′=4) polymorphs of 4-(4-acetylphenyl)piperazin-1-ium 2-amino-4-nitrobenzoate. Z. für Kristallogr. -Cryst. Mater. 2019, 234, 43–57; https://doi.org/10.1515/zkri-2018-2101.Search in Google Scholar

36. Dennington, R., Keith, T. A., Millam, J. M. GaussView, (version 6); Semichem Inc.: Shawnee Mission: Kansas, USA, 2016.Search in Google Scholar

37. Chai, J. D., Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620; https://doi.org/10.1039/b810189b.Search in Google Scholar PubMed

38. Weigend, F., Ahlrichs, R. Balanced basis sets of split-valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; https://doi.org/10.1039/b508541a.Search in Google Scholar

39. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065; https://doi.org/10.1039/b515623h.Search in Google Scholar

40. Andersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S., Kjaergaard, H. G. Similar strength of the NH···O and NH···S hydrogen bonds in binary complexes. J. Phys. Chem. 2014, 118, 11074–11082; https://doi.org/10.1021/jp5086679.Search in Google Scholar

41. Boys, S. F., Bernardi, F. The calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566; https://doi.org/10.1080/00268977000101561.Search in Google Scholar

42. Simon, S., Duran, M., Dannenberg, J. J. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 1996, 105, 11024–11031; https://doi.org/10.1063/1.472902.Search in Google Scholar

43. Defazio, S., Tamasi, G., Cini, R. A molecular orbital study of C–H···Cl– and N–H···Cl– hydrogen bonds. Inferences on selected metal complexes and on protein ClC Cl– channels. Compt. Rendus Chem. 2005, 8, 1584–1609; https://doi.org/10.1016/j.crci.2004.11.042.Search in Google Scholar

44. Frisch, M. J., Head-Gordon, M., Pople, J. A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289; https://doi.org/10.1016/0009-2614(90)80030-h.Search in Google Scholar

45. Head-Gordon, M., Pople, J. A., Frisch, M. J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506; https://doi.org/10.1016/0009-2614(88)85250-3.Search in Google Scholar

46. Dunning, T. H.Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023; https://doi.org/10.1063/1.456153.Search in Google Scholar

47. Woon, D. E., Dunning, T. H.Jr. Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371; https://doi.org/10.1063/1.464303.Search in Google Scholar

48. Purvis, G. D.III, Bartlett, R. J. A full coupled-cluster singles and doubles model – the inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918; https://doi.org/10.1063/1.443164.Search in Google Scholar

49. Pople, J. A., Head-Gordon, M., Raghavachari, K. Quadratic configuration interaction – a general technique for determining electron correlation energies. J. Chem. Phys. 1987, 87, 5968–5975; https://doi.org/10.1063/1.453520.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2024).


Received: 2021-04-15
Accepted: 2021-05-25
Published Online: 2021-06-14
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2024/html?lang=en
Scroll to top button