Home Structure solution of incommensurately modulated La6MnSb15
Article
Licensed
Unlicensed Requires Authentication

Structure solution of incommensurately modulated La6MnSb15

  • Mathis Radzieowski , Steffen Klenner , Rolf-Dieter Hoffmann and Oliver Janka EMAIL logo
Published/Copyright: July 29, 2020

Abstract

La6MnSb15 is synthesized from the constituent elements in quartz ampoules at 973 K. Crucial for the quality of the obtained single-crystals was a slow cooling rate of 2 K h−1. The crystal structure of La6MnSb15 was investigated via single-crystal X-ray diffraction experiments, leading to the observation of superstructure reflections as described in the literature. Two crystals, with refined compositions of La6MnSb15 (1) and La6MnSb14.66(1) (2) were obtained from different batches, yet both showed an orthorhombic body centered unit cell as well as additional reflections at q1 = (0,0,0.258(1)) for crystal (1) and q1 = (0,0,0.244(1)) for crystal (2). The structure could be solved and refined in superspace group Immm(00γ)000 (71.1.12.1), leading to a concise structural model. Due to γ not being exactly 1/4, an incommensurate modulation is present in the presented compounds. In order to describe the structural influence of the modulation in 3D, different approximants were chosen and the differences compared. Additionally, the temperature dependence of the electrical resistivity was investigated, indicating a metallic behavior of the title compound. This result is in line with the retro-theoretical investigation in the literature that counts excess electrons when using the ZintlKlemmBusmann concept. 121Sb Mößbauer-spectroscopic investigations at 78 K show a broad signal with an average isomeric shift of δ ∼ −10 mm s−1, in line with a negatively charged Sb species. The massive line broadening can be explained by the large number of crystallographic antimony sites in the basic structure and the approximant.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Oliver Janka, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany; Universität des Saarlandes, Anorganische Festkörperchemie, Campus C4 1, D-66123 Saarbrücken, Germany, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Snyder, G. J., Toberer, E. S. Nat. Mater. 2008, 7, 105–114. https://doi.org/10.1038/nmat2090.10.1038/nmat2090Search in Google Scholar PubMed

2. Sologub, O., Rogl, P., Bodak, O. J. Phase Equilib. 1995, 16, 61–64. https://doi.org/10.1007/bf02646249.10.1007/BF02646249Search in Google Scholar

3. Sologub, O., Vybornov, M., Rogl, P., Hiebl, K., Cordier, G., Woll, P. J. Solid State Chem. 1996, 122, 266–272. https://doi.org/10.1006/jssc.1996.0112.10.1006/jssc.1996.0112Search in Google Scholar

4. Papoian, G., Hoffmann, R. J. Solid State Chem. 1998, 139, 8–21. https://doi.org/10.1006/jssc.1998.7773.10.1006/jssc.1998.7773Search in Google Scholar

5. Godart, C., Rogl, P., Alleno, E., Gonçalves, A. P., Rouleau, O. Physica B 2006, 378–380, 845–846. https://doi.org/10.1016/j.physb.2006.01.311.10.1016/j.physb.2006.01.311Search in Google Scholar

6. Wakeshima, M., Sakai, C., Hinatsu, Y. J. Phys.: Condens. Matter. 2006, 19, 016218. https://doi.org/10.1088/0953-8984/19/1/016218.10.1088/0953-8984/19/1/016218Search in Google Scholar

7. Tkachuk, A. V., Tam, T., Mar, A. Chem. Met. Alloys 2008, 1, 76–83. https://doi.org/10.30970/cma1.0008.10.30970/cma1.0008Search in Google Scholar

8. Benavides, K. A., McCandless, G. T., Chan, J. Y. Z. Kristallogr. 2017, 232, 583. https://doi.org/10.1515/zkri-2016-2025.10.1515/zkri-2016-2025Search in Google Scholar

9. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74. https://doi.org/10.1107/s0021889877012898.10.1107/S0021889877012898Search in Google Scholar

10. Stoe & Cie GmbH. X-Area (Version 1.70); Darmstadt, 2014.Search in Google Scholar

11. van der Pauw, L. J. Philips Res. Rep. 1958, 13, 1.Search in Google Scholar

12. Long, G. J., Cranshaw, T. E., Longworth, G. Mössbauer Eff. Ref. Data J. 1983, 6, 42.Search in Google Scholar

13. Brand, R. A. WinNormos for Igor6, Version for Igor 6.2 or above: 22.02.2017; Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

14. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790. https://doi.org/10.1107/s0021889807029238.10.1107/S0021889807029238Search in Google Scholar

15. Petříček, V., Dušek, M., Palatinus, L. Jana2006. The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar

16. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345. https://doi.org/10.1515/zkri-2014-1737.10.1515/zkri-2014-1737Search in Google Scholar

17. Stokes, H. T., Campbell, B. J., van Smaalen, S. Acta Crystallogr. 2011, 67, 45–55. https://doi.org/10.1107/s0108767310042297.10.1107/S0108767310042297Search in Google Scholar

18. van Smaalen, S., Campbell, B. J., Stokes, H. T. Acta Crystallogr. 2013, 69, 75–90. https://doi.org/10.1107/s0108767312041657.10.1107/S0108767312041657Search in Google Scholar

19. Orlov, I., Schoeni, N., Chapuis, G. Laboratoire de Cristallographie, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. https://it.iucr.org/resources/finder/.Search in Google Scholar

20. Emsley, J. The Elements; Clarendon Press, Oxford University Press: Oxford, New York, 1998.Search in Google Scholar

21. Eisenmann, B., Gieck, C., Rößler, U. Z. Kristallogr. - NCS 2001, 216, 36. https://doi.org/10.1524/ncrs.2001.216.14.36.10.1524/ncrs.2001.216.14.36Search in Google Scholar

22. Hulliger, F., Schmelczer, R. J. Solid State Chem. 1978, 26, 389–396. https://doi.org/10.1016/0022-4596(78)90174-3.10.1016/0022-4596(78)90174-3Search in Google Scholar

23. Cordier, G., Stelter, M. Z. Naturforsch. 1988, 43b, 463–466. https://doi.org/10.1515/znb-1988-0413.10.1515/znb-1988-0413Search in Google Scholar

24. Radzieowski, M., Block, T., Fickenscher, T., Zhang, Y., Fokwa, B. P. T., Janka, O. Mater. Chem. Front. 2017, 1, 1563–1572. https://doi.org/10.1039/c7qm00057j.10.1039/C7QM00057JSearch in Google Scholar

25. Greenwood, N. N., Gibb, T. C. Mössbauer Spectroscopy; Chapman & Hall: London, 1971.10.1007/978-94-009-5697-1Search in Google Scholar

26. Schellenberg, I., Eul, M., Hermes, W., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 85–93. https://doi.org/10.1002/zaac.200900413.10.1002/zaac.200900413Search in Google Scholar

27. Mishra, R., Pöttgen, R., Hoffmann, R.-D., Fickenscher, T., Eschen, M., Trill, H., Mosel, B. D. Z. Naturforsch. 2002, 57b, 1215. https://doi.org/10.1515/znb-2002-1105.10.1515/znb-2002-1105Search in Google Scholar

28. Radzieowski, M., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Janka, O. Inorg. Chem. Front. 2019, 6, 137–147. https://doi.org/10.1039/c8qi01099d.10.1039/C8QI01099DSearch in Google Scholar

29. Becker, P. J., Coppens, P. Acta Crystallogr. 1974, 30, 129–147. https://doi.org/10.1107/s0567739474000337.10.1107/S0567739474000337Search in Google Scholar

Received: 2020-04-01
Accepted: 2020-05-04
Published Online: 2020-07-29
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Original papers
  4. Ulrich Müller zum 80. Geburtstag gewidmet
  5. Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
  6. The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
  7. Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
  8. Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
  9. New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
  10. Structure solution of incommensurately modulated La6MnSb15
  11. Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
  12. On tungstates of divalent cations (III) – Pb5O2[WO6]
  13. Hydrogen order in hydrides of Laves phases
  14. High-pressure synthesis of SmGe3
  15. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
  16. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
  17. Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
  18. Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
  19. Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
  20. Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0034/html?lang=en
Scroll to top button