Startseite Impact of the production method and diagnostics conditions on the compositions and structure of nanodimensional anatase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of the production method and diagnostics conditions on the compositions and structure of nanodimensional anatase

  • Olesya Timaeva EMAIL logo , Vladimir Nikolaichik , Roman Svetogorov und Galina Kuz’micheva
Veröffentlicht/Copyright: 18. April 2020

Abstract

The detail investigation of the samples with nanodimensional anatase, formed by hydrolysis of TiOSO4 × xH2O without or in the presence of polymer poly(N-vinyl caprolactam), physical precipitation of the polymer followed by the capture of commercial Hombifine N are performed by X-ray powder diffraction using laboratory and synchrotron radiation sources, transmission electron microscopy with the diffraction, and elemental analysis. The two «core»-«shell» models with nanoparticles and their associates as a core can be applied to samples produced. The synchrotron and electron radiation change the degree of crystallinity and the imperfection of anatase, isolate of TiO2−x(OH)2x × yH2O from the nanoparticle shell with a decrease in its thickness, lead to the anatase – rutile phase transition. The double diffraction effect on the appearance of kinematically forbidden reflections caused by the dynamic character of the electron diffraction. The photoactivity depends on microstructural characteristics (specific surface, nanoobjects sizes). The structure and elemental composition of nanoparticles (associates) affect antimicrobial activity against Staphylococcus aureus and Escherichia coli.

Acknowledgements

This work saw supported by the Ministry of Education and Science of the Russian Federation for support of this work (No. 4.1069.2017/PCh, State Task No. 075-00475-19-00).

  1. Conflicts of interest: None.

References

[1] R. G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev.2009, 112, 2373.10.1021/cr100449nSuche in Google Scholar PubMed

[2] Y. Lv, H. Liu, B. Zhao, Z. Tian, A. Li, Tuning photoswitchable dual-color fluorescence from core-shell polymer nanoparticles. Isr. J. Chem.2012, 53, 294.10.1002/ijch.201300015Suche in Google Scholar

[3] Y. Zhu, H. F. Qian, B. A. Drake, R. C. Jin, Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of alpha,beta-unsaturated ketones and aldehydes. Angew. Chem. Int. Edit.2010, 49, 1295.10.1002/anie.200906249Suche in Google Scholar PubMed

[4] A. Verma, O. Uzun, Y. Hu, H.S. Han, N. Watson, S. Chen, D. Chen, F. Stellacci, Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008, 7, 588.10.1038/nmat2202Suche in Google Scholar PubMed PubMed Central

[5] M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004, 104, 293.10.1021/cr030698+Suche in Google Scholar PubMed

[6] O. Timaeva, I. Chihacheva, G. Kuzmicheva, N. Ivanovskaya, A. Dorohov, New mechanochemical effects in the poly(N-vinylcaprolactam) – nano-titanium oxides(IV) system. J. Mater. Res.2018, 33, 1475.10.1557/jmr.2018.55Suche in Google Scholar

[7] S. N. Sulyanov, A. N. Popov, D. M. Kheiker, Using a two-dimensional detector for X-ray powder diffractometry. J. Appl. Cryst.1994, 27, 934.10.1107/S002188989400539XSuche in Google Scholar

[8] M. Dusek, V. Petricek, L. Palatinus, Introduction to JANA2006. Acta. Cryst.2006, 62, s46.10.1107/S0108767306099089Suche in Google Scholar

[9] W. H. Hall, X-ray line broadening in metals. Proc. Phys. Soc.1949, 62, 741.10.1088/0370-1298/62/11/110Suche in Google Scholar

[10] A. A. Gainanova, G. M. Kuz’micheva, I. G. Vasilyeva, Nanosized low-temperature phases of titanium(IV) oxide with anatase and η-phase structures: composition, structure, and photocatalytic properties. Russ. Chem. Bull.2018, 67, 1350.10.1007/s11172-018-2224-2Suche in Google Scholar

[11] O. I. Timaeva, I. P. Chihacheva, G. M. Kuzmicheva, L. V. Saf’yanova, R. G. Chumakov, R. P. Terekhova, Preparation, physicochemical properties and antimicrobial activity of η-modification of titanium(IV) oxide intercalated with poly(N-vinylcaprolactam). Appl. Nanosci.2018, 8, 1729.10.1007/s13204-018-0848-zSuche in Google Scholar

[12] G. M. Kuz’micheva, Nanosized phases with titanium (IV) oxides. Prepararion. Characterization. Properties. Fine Chem. Technol.2015, 10, 5.Suche in Google Scholar

[13] L. Zhiyuan, Y. Shuili, P. Heedeung, Y. Qingbin, L. Guicai, L. Qi, Impact of titanium dioxide nanoparticles on the bacterial communities of biological activated carbon filter intended for drinking water treatment. Environ. Sci. Pollut. Res.2006, 23, 15574.10.1007/s11356-016-6742-xSuche in Google Scholar PubMed

[14] J. Li, S. Ma, G. Liu, K. Yang, M. Tong, D. Lin, Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One2014, 9, e110247.10.1371/journal.pone.0110247Suche in Google Scholar PubMed PubMed Central

Received: 2019-10-02
Accepted: 2020-03-22
Published Online: 2020-04-18
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0051/html?lang=de
Button zum nach oben scrollen