Abstract
The quaternary gallium-rich intermetallic phases RE2Pt3Ga4In with RE = Y and Gd-Tm were synthesized by arc-melting of the elements and subsequent annealing. Small single crystals were obtained by high-frequency annealing of the samples in sealed tantalum ampoules. The polycrystalline samples were characterized through their X-ray powder patterns. The RE2Pt3Ga4In phases crystallize with a site ordering variant of the orthorhombic Y2Rh3Sn5 type, space group Cmc 21. The structures of Gd2Pt3Ga4In, Dy2Pt3Ga4.14In0.86, Er2Pt3Ga4.17In0.83 and Tm2Pt3Ga4.21In0.79 were refined from single-crystal X-ray diffraction data. The single crystals reveal small homogeneity ranges RE2Pt3Ga4±xIn1±x. The striking geometrical structural building units are slightly distorted trigonal prisms around the three crystallographically independent platinum atoms: Pt1@RE4Ga2, Pt2@RE2Ga4 and Pt3@RE2Ga2In2. Based on these prismatic building units, the RE2Pt3Ga4In structures can be described as intergrowth variants of TiNiSi and NdRh2Sn4 related structural slabs. Temperature dependent magnetic susceptibility studies of Gd2Pt3Ga4In and Tb2Pt3Ga4In show Curie-Weiss behavior and the experimental magnetic moments confirm stable trivalent gadolinium respectively terbium. Gd2Pt3Ga4In and Tb2Pt3Ga4In order antiferromagnetically at TN = 15.8(1) and 26.0(1) K. Magnetization curves at 3 K show field-induced spin reorientations.
Acknowledgements
The research stay of MH in Münster was supported by the Deutscher Akademischer Austauschdienst.
References
[1] W. H. Zachariasen, Acta Crystallogr. 1949, 2, 94.10.1107/S0365110X49000217Search in Google Scholar
[2] K. Remschnig, T. Le Bihan, H. Noël, P. Rogl, J. Solid State Chem. 1992, 97, 391.10.1016/0022-4596(92)90048-ZSearch in Google Scholar
[3] W. Rieger, H. Nowotny, F. Benesovsky, Monatsh. Chem. 1964, 95, 1502.10.1007/BF00901704Search in Google Scholar
[4] O. I. Bodak, E. I. Gladyshevskii, Sov. Phys. Crystallogr. 1970, 14, 859.Search in Google Scholar
[5] O. I. Bodak, V. K. Pecharskii, O. Y. Mrooz, V. E. Zavodnik, G. M. Vitvitskaya, P. S. Salamakha, Dopov. Akad. Nauk Ukr. RSR, Ser. B1985, 2, 36.Search in Google Scholar
[6] E. Parthé, Elements of Inorganic Structural Chemistry. Pöge, Leipzig, 1990.Search in Google Scholar
[7] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar
[8] P. Solokha, S. De Negri, A. Saccone, V. Pavlyuk, B. Marciniak, J.-C. Tedenac, Acta Crystallogr. C2007, 63, i13.10.1107/S0108270107001503Search in Google Scholar
[9] L. Sojka, M. Demchyna, B. Belan, M. Manyako, Ya. Kalychak, Intermetallics2014, 49, 14.10.1016/j.intermet.2014.01.003Search in Google Scholar
[10] T. Harmening, L. van Wüllen, H. Eckert, U. Ch. Rodewald, R. Pöttgen, Z. Anorg. Allg. Chem. 2010, 636, 972.10.1002/zaac.201000003Search in Google Scholar
[11] A. T. Aldred, Trans. Met. Soc. AIME1962, 224, 1082.Search in Google Scholar
[12] T. H. Geballe, B. T. Matthias, V. B. Compton, E. Corenzwit, G. W. Hull, L. D. Longinotti, Phys. Rev. 1965, 137, A119.10.1103/PhysRev.137.A119Search in Google Scholar
[13] E. Hovestreydt, N. Engel, K. Klepp, B. Chabot, E. Parthé, J. Less-Common Met. 1982, 85, 247.10.1016/0022-5088(82)90075-3Search in Google Scholar
[14] T. Harmening, H. Eckert, C. M. Fehse, C. P. Sebastian, R. Pöttgen, J. Solid State Chem. 2011, 184, 3303.10.1016/j.jssc.2011.10.025Search in Google Scholar
[15] M. Meot-Meyer, G. Venturini, B. Malaman, J. Steinmetz, B. Roques, Mater. Res. Bull. 1984, 19, 1181.10.1016/0025-5408(84)90069-2Search in Google Scholar
[16] R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Search in Google Scholar
[17] Ya. V. Galadzhun, R.-D. Hoffmann, R. Pöttgen, M. Adam, J. Solid State Chem. 1999, 148, 425.10.1006/jssc.1999.8471Search in Google Scholar
[18] B. Heying, J. Kösters, R.-D. Hoffmann, L. Heletta, R. Pöttgen, Z. Naturforsch. 2017, 72b, 753.10.1515/znb-2017-0127Search in Google Scholar
[19] M. Horiacha, V. I. Zaremba, F. Stegemann, R. Pöttgen, Monatsh. Chem. 2019, 150, 1409.10.1007/s00706-019-02464-wSearch in Google Scholar
[20] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Search in Google Scholar
[21] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar
[22] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar
[23] G. M. Sheldrick, Acta Crystallogr.1990, A46, 467.10.1107/S0108767390000277Search in Google Scholar
[24] G. M. Sheldrick, Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar
[25] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20), ASM International®, Materials Park, Ohio (USA), 2019.Search in Google Scholar
[26] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[27] H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.10.1107/S0108767399004262Search in Google Scholar
[28] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.10.1107/S0021889800007184Search in Google Scholar
[29] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, 69B, 249.10.1107/S2052519213010014Search in Google Scholar
[30] N. G. Patil, S. Ramakrishnan, Phys. Rev. B1999, 59, 12054.10.1103/PhysRevB.59.12054Search in Google Scholar
[31] M. Gamża, R. Gumeniuk, U. Burkhardt, W. Schnelle, H. Rosner, A. Leithe-Jasper, A. Ślebarski, Phys. Rev. B2017, 95, 165142.10.1103/PhysRevB.95.165142Search in Google Scholar
[32] N. S. Sangeetha, A. Thamizhavel, C. V. Tomy, S. Basu, S. Ramakrishnan, D. Pal, Phys. Rev. B2011, 84, 064430.10.1103/PhysRevB.84.064430Search in Google Scholar
[33] T. Harmening, W. Hermes, M. Eul, F. M. Schappacher, R. Pöttgen, Z. Kristallogr. 2009, 224, 351.10.1524/zkri.2009.1160Search in Google Scholar
[34] C. P. Sebastian, J. Salvador, J. B. Martin, M. G. Kanatzidis, Inorg. Chem. 2010, 49, 10468.10.1021/ic101502eSearch in Google Scholar
[35] E. L. Thomas, M. S. Kim, D. A. Sokolov, M. C. Bennett, M. C. Aronson, J. Y. Chan, J. Solid State Chem. 2007, 180, 2356.10.1016/j.jssc.2007.06.012Search in Google Scholar
[36] Ya. M. Kalychak, V. I. Zaremba, R. Pöttgen, M. Lukachuk, R.-D. Hoffmann, Rare earth–transition metal–indides. in Handbook on the Physics and Chemistry of Rare Earths, (Eds. K. A. Gschneider Jr., V. K. Pecharsky and J.-C. Bünzli), Vol. 34, chapter 218, Elsevier, Amsterdam, p. 1, 2005.10.1016/S0168-1273(04)34001-8Search in Google Scholar
[37] W. Schäfer, E. Jansen, G. Will, P. A. Kotsanidis, J. K. Yakinthos, H. Tietze-Jaensch, J. Alloys Compd. 1994, 206, 225.10.1016/0925-8388(94)90040-XSearch in Google Scholar
[38] J. Emsley, The Elements. Oxford University Press, Oxford, 1999.Search in Google Scholar
[39] J. Donohue, The Structures of the Elements. Wiley, New York (USA), 1974.Search in Google Scholar
[40] Ya. V. Galadzhun, M. M. Horiacha, G. P. Nychyporuk, U. Ch. Rodewald, R. Pöttgen, V. I. Zaremba, Z. Anorg. Allg. Chem. 2016, 642, 896.10.1002/zaac.201600228Search in Google Scholar
[41] H. Lueken, Magnetochemie. Teubner, Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
[42] R. Pöttgen, J. Mater. Chem. 1996, 6, 63.10.1039/JM9960600063Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystallographic orientation of ilmenite inclusions in amphibole – an electron backscatter diffraction study
- Quaternary intermetallics RE2Pt3Ga4In (RE=Y, Gd-Tm) – intergrowth structures of NdRh2Sn4 and TiNiSi related slabs
- Impact of the production method and diagnostics conditions on the compositions and structure of nanodimensional anatase
- Alkaline earth metal ordering in CaCu9Mg2 and SrCu9Mg2
- Elucidating the physical properties of the molybdenum oxide Mo4O11 and its tantalum substituted variant Mo2Ta2O11
- Coordination sequences of 2-uniform graphs
- Silicate-germanate K2Y[(Si3Ge)O10(OH)] with unusual complex corrugated layer and its correlation to ring silicate gerenite and chain silicate chkalovite
- Letter
- On the 80th birthday of Professor (retired) Dr. Dr. h.c. Peter Paufler
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystallographic orientation of ilmenite inclusions in amphibole – an electron backscatter diffraction study
- Quaternary intermetallics RE2Pt3Ga4In (RE=Y, Gd-Tm) – intergrowth structures of NdRh2Sn4 and TiNiSi related slabs
- Impact of the production method and diagnostics conditions on the compositions and structure of nanodimensional anatase
- Alkaline earth metal ordering in CaCu9Mg2 and SrCu9Mg2
- Elucidating the physical properties of the molybdenum oxide Mo4O11 and its tantalum substituted variant Mo2Ta2O11
- Coordination sequences of 2-uniform graphs
- Silicate-germanate K2Y[(Si3Ge)O10(OH)] with unusual complex corrugated layer and its correlation to ring silicate gerenite and chain silicate chkalovite
- Letter
- On the 80th birthday of Professor (retired) Dr. Dr. h.c. Peter Paufler