Silicate-germanate K2Y[(Si3Ge)O10(OH)] with unusual complex corrugated layer and its correlation to ring silicate gerenite and chain silicate chkalovite
-
Anastasiia P. Topnikova
, Elena L. Belokoneva
Abstract
A new silicate-germanate K2Y[(Si3Ge)O10(OH)] was synthesized hydrothermally in a system Y2O3:GeO2:SiO2 = 1:1:2 (T = 280 °C; P = 90–100 atm.); K2CO3 was added to the solution as a mineralizer. Single-crystal X-ray diffraction experiment was carried out at low temperature (150 K). The unit cell parameters are a = 10.4975(4), b = 6.9567(2), c = 15.4001(6) Å, β = 104.894(4)°; V = 1086.86(7) Å3; space group is P 21/c. A novel complex anion is presented by corrugated (Si,Ge) tetrahedral layers connected by couples of YO6 octahedra into the mixed microporous framework with the channels along b and a axes, the maximal size of cross-section is ~5.6 Å. This structure has similarity with the two minerals: ring silicate gerenite (Ca,Na)2(Y,REE)3Si6O18 · 2H2O and chain silicate chkalovite Na2BeSi2O6. Six-member rings with 1̅ symmetry as in gerenite are distinguished in the new layer. They are mutually perpendicular to each other and connected by additional tetrahedra. Straight crossing chains in chkalovite change to zigzag four-link chains in the new silicate-germanate layer.
Acknowledgements
This work was supported by Russian Foundation for Basic Research (RFBR) [grant numbers 18-35-00645 and 18-33-01129]. Work in Chernogolovka was carried out within the state task for ISSP RAS. The authors are grateful to Dr. Dmitry Ksenofontov for his aid in calculation of theoretical powder XRD pattern and to Dr. Vasiliy Yapaskurt for determination of chemical compositions (both Lomonosov Moscow State University, Geological faculty).
References
[1] Mineralogy Database. http://www.mindat.org.Search in Google Scholar
[2] ICSD FIZ. http://www.fiz-karlsruhe.de.Search in Google Scholar
[3] C. Michel, G. Buisson, E. F. Bertaut, Structure de Y2SiO5. Compt. Rend. Hebd. Seanc. Acad. Sci. Ser. B1967, 264, 397.Search in Google Scholar
[4] B. A. Maksimov, V. V. Ilyukhin, Yu. A. Kharitonov, N. V. Belov, Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5. Dual function of yttrium. Kristallografiya1970, 15, 926.Search in Google Scholar
[5] B. V. Merinov, V. V. Ilyukhin, B. A. Maksimov, N. V. Belov, The refinement of the crystal structure of Na,Y-orthosilicate NaYSiO4. Dokl. Akad. Nauk SSSR1979, 248, 1108.Search in Google Scholar
[6] B. A. Maksimov, N. V. Belov, The high temperature X-ray analysis of the monocrystals Na5YSi4O12. Dokl. Akad. Nauk SSSR1981, 261, 623.Search in Google Scholar
[7] G. J. Redhammer, G. Roth, Lithium and sodium yttrium orthosilicate oxyapatite, LiY9(SiO4)6O2 and NaY9(SiO4)6O2, at both 100K and near room temperature. Acta Crystallogr.2003, C59, i120.10.1107/S0108270103023321Search in Google Scholar
[8] A. N. Christensen, R. G. Hazell, A. W. Hewat, Synthesis, crystal growth and structure investigations of rare-earth disilicates and rare-earth oxyapatites. Acta Chem. Scand. 1997, 51, 37.10.3891/acta.chem.scand.51-0037Search in Google Scholar
[9] V. Kahlenberg, W. Wertl, H. Schottenberger, R. Kaindl, D. M. Toebbens, P. Schuster, Rietveld analysis and Raman spectroscopic investigations on alpha-Y2Si2O7. Z. Anorg. Allg. Chem. 2008, 634, 1166.10.1002/zaac.200700548Search in Google Scholar
[10] V. Kahlenberg, R. Kaindl, J. Konzett, Beta-Y2Si2O7 – structural investigations on a quenchable high-pressure mixed anion silicate. Solid State Sci.2007, 9, 542.10.1016/j.solidstatesciences.2007.04.014Search in Google Scholar
[11] N. G. Batalieva, Yu. A. Pyatenko, Artificial yttrialite (gamma-phase) – a representative of a new structure type in the rare earth diorthosilicate series. Kristallografiya1971, 16, 905.Search in Google Scholar
[12] G. J. Redhammer, G. Roth, β-Y2Si2O7, a new thortveitite-type compound, determined at 100 and 280K. Acta Crystallogr. C2003, 59, i103.10.1107/S0108270103018869Search in Google Scholar
[13] B. V. Merinov, N. V. Belov, B. A. Maksimov, The crystal structure of Na3YSi2O7. Dokl. Akad. Nauk SSSR1981, 260, 1128.Search in Google Scholar
[14] M. C. Schäfer, I. Hartenbach, T. Schleid, Tetrayttrium difluoride disilicate orthosilicate, Y4F2[Si2O7][SiO4]. Acta Crystallogr. E2013, 69, i71.10.1107/S1600536813026391Search in Google Scholar
[15] A. N. Kornev, B. A. Maksimov, N. G. Batalieva, V. V. Ilyukhin, N. V. Belov, Crystalline structure of Thalenit Y3(Si3O10)(OH). Dokl. Akad. Nauk SSSR1972, 202, 1324.Search in Google Scholar
[16] E. Sokolova, A. A. Agakhanov, F. C. Hawthorne, L. A. Pautov, The crystal structure of moskvinite-(Y); Na2K(Y,REE)(Si6O15), a new silicate mineral with (Si6O15) three-membered double rings from the Dara-i-Pioz moraine, Tien-Shan mountains, Tajikistan. Can. Mineral. 2003, 41, 513.10.2113/gscanmin.41.2.513Search in Google Scholar
[17] S. M. Haile, J. Maier, B. J. Wuensch, R. A. Laudise, Structure of Na3YSi6O15 – a unique silicate based on discrete Si6O15 units, and a possible fast-ion conductor. Acta Crystallogr. B1995, 51, 673.10.1107/S0108768194014096Search in Google Scholar
[18] L. A. Groat, The crystal structure of gerenite-(Y), (Ca,Na)2(Y,REE)3Si6O18·2H2O, a cyclosilicate mineral. Can. Mineral.1998, 36, 801.Search in Google Scholar
[19] H. U. Beyeler, T. Hibma, The sodium conductivity paths in the superionic conductors Na5ReSi4O12. Solid State Commun. 1978, 27, 641.10.1016/0038-1098(78)90461-1Search in Google Scholar
[20] D. M. Többens, V. Kahlenberg, R. Kaindl, Characterization and ab initio XRPD structure determination of a novel silicate with vierer single chains: the crystal structure of NaYSi2O6. Inorg. Chem.2005, 44, 9554.10.1021/ic051401oSearch in Google Scholar PubMed
[21] G. Morrison, A. M. Latshaw, N. R. Spagnuolo, H.-C. Zur Loye, Observation of intense X-ray scintillation in a family of mixed anion silicates, Cs3RESi4O10F2 (RE=Y, Eu-Lu), obtained via an enhanced flux crystal growth technique. J. Am. Chem. Soc.2017, 139, 14743.10.1021/jacs.7b08559Search in Google Scholar PubMed
[22] V. Kahlenberg, T. Manninger, K9Y3[Si12O32]F2. Acta Crystallogr. E2014, 70, i11.10.1107/S1600536814001470Search in Google Scholar PubMed PubMed Central
[23] U. Kolitsch, M. Wierzbicka-Wieczorek, E. Tillmanns, Crystal chemistry and topology of two flux-grown yttrium silicates, BaKYSi2O7 and Cs3YSi8O19 Locality: synthetic. Can. Mineral.2009, 47, 421.10.3749/canmin.47.2.421Search in Google Scholar
[24] S. Ghose, P. K. Sen Gupta, C. F. Campana, Symmetry and crystal structure of monteregianite, Na4K2Y2Si16O38·10H2O, a double-sheet silicate with zeolitic properties. Am. Mineral. 1987, 72, 365.Search in Google Scholar
[25] E. M. Rivera-Muñoz, L. Bucio, Rietveld refinement of Y2GeO5. Acta Crystallogr. E2009, 65, i60.10.1107/S1600536809026579Search in Google Scholar PubMed PubMed Central
[26] G. J. Redhammer, G. Roth, Amthauer, Georg. Yttrium pyrogermanate, Y2Ge2O7. Acta Crystallogr. C, 2007, 63, i93.10.1107/S0108270107042825Search in Google Scholar PubMed
[27] WinXPow. Software, Stoe&CIE GmbH 2002.Search in Google Scholar
[28] Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.Search in Google Scholar
[29] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[30] L. J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr.2012, 45, 849.10.1107/S0021889812029111Search in Google Scholar
[31] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C2015, 71, 3.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central
[32] E. Dowty, ATOMS. Shape Software, Kingsport, Tennessee, USA, 2006.Search in Google Scholar
[33] A. P. Topnikova, E. L. Belokoneva, O. V. Dimitrova, A. S. Volkov, Yu. V. Nelyubina, Na3Tb3[Si6O18]·H2O, a synthetic analogue of microporous mineral gerenite. Cryst. Rep. 2016, 61, 566.10.1134/S1063774516040234Search in Google Scholar
[34] M. A. Simonov, Y. K. Egorov-Tismenko, N. V. Belov, Utochnennaya kristallicheskaya struktura chkalovita Na2Be[Si2O6]. Dokl. Akad. Nauk SSSR1975, 225, 1319.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0005).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystallographic orientation of ilmenite inclusions in amphibole – an electron backscatter diffraction study
- Quaternary intermetallics RE2Pt3Ga4In (RE=Y, Gd-Tm) – intergrowth structures of NdRh2Sn4 and TiNiSi related slabs
- Impact of the production method and diagnostics conditions on the compositions and structure of nanodimensional anatase
- Alkaline earth metal ordering in CaCu9Mg2 and SrCu9Mg2
- Elucidating the physical properties of the molybdenum oxide Mo4O11 and its tantalum substituted variant Mo2Ta2O11
- Coordination sequences of 2-uniform graphs
- Silicate-germanate K2Y[(Si3Ge)O10(OH)] with unusual complex corrugated layer and its correlation to ring silicate gerenite and chain silicate chkalovite
- Letter
- On the 80th birthday of Professor (retired) Dr. Dr. h.c. Peter Paufler
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystallographic orientation of ilmenite inclusions in amphibole – an electron backscatter diffraction study
- Quaternary intermetallics RE2Pt3Ga4In (RE=Y, Gd-Tm) – intergrowth structures of NdRh2Sn4 and TiNiSi related slabs
- Impact of the production method and diagnostics conditions on the compositions and structure of nanodimensional anatase
- Alkaline earth metal ordering in CaCu9Mg2 and SrCu9Mg2
- Elucidating the physical properties of the molybdenum oxide Mo4O11 and its tantalum substituted variant Mo2Ta2O11
- Coordination sequences of 2-uniform graphs
- Silicate-germanate K2Y[(Si3Ge)O10(OH)] with unusual complex corrugated layer and its correlation to ring silicate gerenite and chain silicate chkalovite
- Letter
- On the 80th birthday of Professor (retired) Dr. Dr. h.c. Peter Paufler