Startseite Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid

  • Oleg I. Siidra EMAIL logo , Evgeny V. Nazarchuk , Dmitry O. Charkin , Nikita V. Chukanov , Alexander Yu. Zakharov , Stepan N. Kalmykov , Yuriy A. Ikhalaynen und Mikhail I. Sharikov
Veröffentlicht/Copyright: 27. September 2018

Abstract

The reaction of sodium N-morpholine acetate with selenic and sulfuric acid and uranyl nitrate results in the formation of two novel open-framework compounds, |Na(Hmfa)|[(UO2)2(SeO4)3(H2O)](H2O)2 (NaUSe) and [Na2(SO3OH)(Hmfa)]|(UO2)(SO4)2| (NaUS), respectively. Despite identical synthetic procedures, sulfate structure dramatically differs from selenate compound. Their common feature is an open-framework featuring two-dimensional system of channels occupied by protonated morpholino-N-acetic acid species. Coordination of Na atoms is different. In NaUSe, [(UO2)2 (SeO4)3(H2O)]2− layers are pillared by {Na2O8(H2O)2(Hmfa)2} complexes to form a microporous framework. In NaUS, UO7 and SO4 polyhedra of [(UO2)(SO4)2]2− chains share common oxygen atoms with Na-centered tetrameric complexes providing a three-dimensional integrity of the structure. Both of the compounds are characterized by IR spectroscopy.

Acknowledgements

This work was financially supported by the Russian Science Foundation through the grant 16-17-10085. Technical support by the SPbSU X-ray Diffraction and Microscopy and Microanalysis Resource Centers is gratefully acknowledged.

References

[1] D. Seyferth, Uranocene. The first member of a new class of organometallic derivatives of the f elements. Organometallics2004, 23, 3562.10.1021/om0400705Suche in Google Scholar

[2] L. L. Burger, Uranium and plutonium extraction by organophosphorus compounds. J. Phys. Chem.1958, 62, 590.10.1021/j150563a017Suche in Google Scholar

[3] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates. Coord. Chem. Rev.2014, 266–267, 69.10.1016/j.ccr.2013.08.038Suche in Google Scholar

[4] S. V. Krivovichev, Crystal chemistry of uranium oxides and minerals, in Comprehensive Inorganic Chemistry II, Vol. 2, (Eds. J. Reedijk and K. Poeppelmeier) Elsevier, Oxford, p. 611, 2013.10.1016/B978-0-08-097774-4.00227-8Suche in Google Scholar

[5] S. V. Krivovichev, V. V. Gurzhiy, I. G. Tananaev, B. F. Myasoedov, Amine-templated uranyl selenates with chiral [(UO2)2(SeO4)3 (H2O)]2− layers: topology, isomerism, structural relationships. Z. Kristallogr. Cryst. Mater.2009, 224, 316.10.1524/zkri.2009.1145Suche in Google Scholar

[6] O. I. Siidra, E. V. Nazarchuk, S. N. Bocharov, W. Depmeier, A. I. Zadoya, Formation of co-racemic uranyl chromate constructed from chiral layers of different topology. Acta Crystallogr.2017, B73, 101.10.1107/S205252061601917XSuche in Google Scholar

[7] O. I. Siidra; E. V. Nazarchuk, E. V. Sysoeva, R. A. Kayukov, W. Depmeier, Isolated uranyl chromate and polychromate units in crown ether templated compounds. Eur. J. Inorg. Chem.2014, 2014, 5495.10.1002/ejic.201402806Suche in Google Scholar

[8] P. Thuery, Uranyl alkali metal ion heterometallic complexes with cucurbit[6]uril and a sulfonated catechol. Cryst. Growth Des.2011, 11, 3282.10.1021/cg2005375Suche in Google Scholar

[9] Y. Yu, W. Zhan, T. E. Albrecht-Schmitt, One- and two-dimensional silver and zinc uranyl phosphates containing bipyridyl ligands. Inorg. Chem.2007, 46, 10214.10.1021/ic701571wSuche in Google Scholar PubMed

[10] O. I. Siidra, E. V. Nazarchuk, D. O. Charkin, N. V. Chukanov, W. Depmeier, S. N. Bocharov, M. I. Sharikov, Uranyl sulfate nanotubules templated by N-phenylglycine. Nanomaterials2018, 216, 8.10.3390/nano8040216Suche in Google Scholar PubMed PubMed Central

[11] M. Saeidifar, H. Mansouri-Torshizi, A. Divsalar, A. A. Saboury, Novel 2,2′-bipyridine palladium(II) complexes with glycine derivatives: synthesis, characterization, cytotoxic assays and DNA-binding studies. J. Iran. Chem. Soc.2013, 10, 1001.10.1007/s13738-013-0237-1Suche in Google Scholar

[12] A. L. Smith, Applied Infrared Spectroscopy: Fundamentals, Techniques, and Analytical Problem-Solving, Wiley, New York, p. 336, 1979.Suche in Google Scholar

[13] H. R. Hoekstra, Vibrational spectra. in Gmelin Handbook of Inorganic Chemistry Uranium Supplementum, Springer Verlag, Berlin, p. 15, 211, 1982.Suche in Google Scholar

[14] J. Čejka, Infrared spectroscopy and thermal analysis of the uranyl minerals. Rev. Mineral.1999, 38, 521.10.1515/9781501509193-017Suche in Google Scholar

[15] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry, John Wiley and Sons, New York, p. 350, 2008.10.1002/9780470405888Suche in Google Scholar

[16] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley and Sons, Hoboken, p. 424, 2009.Suche in Google Scholar

[17] N. V. Chukanov, A. D. Chervonnyi, Infrared Spectroscopy of Minerals and Related Compounds, Springer, Cham–Heidelberg–Dordrecht–New York–London, p. 1109, 2016.10.1007/978-3-319-25349-7Suche in Google Scholar

[18] Bruker-AXS APEX2. Version 2014.11-0. Madison, WI, USA, 2014.Suche in Google Scholar

[19] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr.2015, A71, 3.10.1107/S2053229614024218Suche in Google Scholar

[20] I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr.1985, B41, 244.10.1107/S0108768185002063Suche in Google Scholar

[21] P. C. Burns, R. C. Ewing, F. C. Hawthorne, The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can. Mineral.1997, 35, 155l.Suche in Google Scholar

[22] F. C. Hawthorne, S. V. Krivovichev, P. C. Burns, The crystal chemistry of sulfate minerals, in Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance, (Eds. C. N. Alpers, J. L. Jambor and D. K. Nordstrom) Mineralogical Society of America and Geochemical Society, Rev. Mineral. Geochem. 40, p. 1, 2000.10.1515/9781501508660-003Suche in Google Scholar

[23] G. Ferraris, G. Ivaldi, X-OH and O-H···O bond lengths in protonated oxoanions. Acta Crystallogr.1984, B40, 1.10.1107/S0108768184001671Suche in Google Scholar

[24] P. M. Thomas, A. J. Norquist, M. B. Doran, D. O’Hare, Organically templated uranium(VI) sulfates: understanding phase stability using composition space. J. Mater. Chem.2003, 13, 88.10.1039/b206694gSuche in Google Scholar

[25] M. S. Bharara, A. E. V. Gorden, Amine templated two- and three-dimensional uranyl sulfates. Dalton Trans.2010, 39, 3557.10.1039/b926973hSuche in Google Scholar PubMed

[26] J. Ling, G. E. Sigmon, P. C. Burns, Syntheses, structures, characterizations and charge-density matching of novel amino-templated uranyl selenates. J. Solid State Chem.2009, 182, 402.10.1016/j.jssc.2008.11.013Suche in Google Scholar

[27] O. I. Siidra, E. V. Nazarchuk, S. V. Krivovichev, Isopropylammonium layered uranyl chromates: syntheses and crystal structures of [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] and [(CH3)2CHNH3]2[(UO2)2 (CrO4)3(H2O)]. Z. Anorg. Allg. Chem.2012, 638, 976.10.1002/zaac.201100558Suche in Google Scholar

[28] A. J. Norquist, P. M. Thomas, M. B. Doran, D. O’Hare, Synthesis of cyclical diamine templated uranium sulfates. Chem. Mater.2002, 14, 5179.10.1021/cm020793jSuche in Google Scholar

[29] M. B. Doran, A. J. Norquist, D. O’Hare, (C3H12N2)2[UO2(H2O)2 (SO4)2]2·2H2O: an organically templated uranium sulfate with a novel dimer type. Acta Crystallogr.2003, E59, m765.10.1107/S1600536805009682Suche in Google Scholar

[30] M. Bouroushian, in Electrochemistry of the Metal Chalcogenides, Springer, London, UK, 2010.10.1007/978-3-642-03967-6Suche in Google Scholar

[31] R. E. Dinnebier, T. Runčevski, B. Hinrichsen, Crystal structure of the dietary supplement ferrous glycine sulfate. Z. Anorg. Allg. Chem.2016, 642, 306.10.1002/zaac.201500776Suche in Google Scholar

[32] S. Vilminot, E. Philippot, L. Cot, Structure du sulfate d’ammonium et de glycinium NH4NH3CH2COOHSO4. Acta Crystallogr.1974, B30, 2602.10.1107/S0567740874007655Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2103).


Received: 2018-06-03
Accepted: 2018-09-05
Published Online: 2018-09-27
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2018-2103/html
Button zum nach oben scrollen