Competition between coordination bonds and hydrogen bonding interactions in solvatomorphs of copper(II), cadmium(II) and cobalt(II) complexes with 2,2′-bipyridyl and acetate
-
José Antônio do Nascimento Neto
Abstract
The delicate balance among conformation, coordination bonds and hydrogen bonding has been probed in solvatomorphs of known metal-organic molecules synthesised from copper(II), cadmium(II) and cobalt(II) with acetate (OAc) and 2,2′-bipyridine (bipy). The Cu(OAc)2(bipy) complex, isolated as a pentahydrate, has the acetate ligands oriented to opposite sides of the coordination square plane. DFT calculations show the energy difference between this structure and a syn form amount to approximately 16 kJ/mol. The presence of lattice water enables the formation of O–H···O hydrogen bonds with the acetate ligands. Different coordination numbers and energies are found as a function of the number of water molecules co-crystallising in the Cd(OAc)2(bipy)(OH2)·3H2O and [Co(OAc)(bipy)2](OAc)·3H2O complexes.
References
[1] N. Meundaeng, A. Rujiwatra, T. J. Prior, Transit. Met. Chem.2016, 41, 783.10.1007/s11243-016-0079-7Search in Google Scholar
[2] H. G. Brittain, J. Pharm. Sci.2012, 101, 464.10.1002/jps.22788Search in Google Scholar
[3] B. Stöger, P. Kautny, D. Lumpi, E. Zobetz, J. Fröhlich, Acta Crystallogr. B2012, 68, 667.10.1107/S0108768112039651Search in Google Scholar
[4] I. Šalitroš, O. Fuhr, M. Ruben, Materials2016, 9, 585.10.3390/ma9070585Search in Google Scholar
[5] M. Kitamura, J. Cryst. Growth2002, 237, 2205.10.1016/S0022-0248(01)02277-1Search in Google Scholar
[6] J. A. do N. Neto, C. C. da Silva, L. Ribeiro, G. A. Vasconcelos, B. Gontijo Vaz, V. S. Ferreira, L. H. K. Queiroz Júnior, L. J. Q. Maia, A. M. Sarotti, F. T. Martins, New J. Chem.2017, 41, 12843.10.1039/C7NJ02393FSearch in Google Scholar
[7] M. Cibian, G. S. Hanan, Chem. Eur. J.2015, 21, 9474.10.1002/chem.201500852Search in Google Scholar PubMed
[8] B. P. Chekal, A. M. Campeta, Y. A. Abramov, N. Feeder, P. P. Glynn, R. W McLaughlin, P. A. Meenan, R. A. Singer, Org. Process Res. Dev.2009, 13, 1327.10.1021/op9001559Search in Google Scholar
[9] D. Mangin, F. Puel, S. Veesler, Org. Process Res. Dev.2009, 13, 1241.10.1021/op900168fSearch in Google Scholar
[10] G. H. Eom, H. Min Park, M. Y. Hyun, S. P. Jang, C. Kim, J. H. Lee, S. J. Lee, S.-J. Kim, Y. Kim, Polyhedron2011, 30, 1555.10.1016/j.poly.2011.03.040Search in Google Scholar
[11] B.-H. Ye, X.-M. Chen, F. Xue, L.-N. Ji, T. C. W. Mak, Inorg. Chim. Acta2000, 299, 1.10.1016/S0020-1693(99)00426-0Search in Google Scholar
[12] D. P. Rillema, S. R. Stoyanov, A. J. Cruz, H. Nguyen, C. Moore, W. Huang, K. Siam, A. Jehan, V. K. Reddy, Dalton Trans.2015, 44, 17075.10.1039/C5DT01891ASearch in Google Scholar
[13] E. Melnic, E. B. Coropceanu, A. Forni, E. Cariati, O. V. Kulikova, A. V. Siminel, V. C. Kravtsov, M. S. Fonari, Cryst. Growth Des.2016, 16, 6275.10.1021/acs.cgd.6b00807Search in Google Scholar
[14] D. Zhao, X.-H. Liu, Z.-Z. Shi, C.-D. Zhu, Y. Zhao, P. Wang, W.-Y. Sun, Dalton Trans.2016, 45, 14184.10.1039/C6DT02755ESearch in Google Scholar PubMed
[15] N. Megger, L. Welte, F. Zamora, J. Müller, Dalton Trans.2011, 40, 1802.10.1039/c0dt01569eSearch in Google Scholar PubMed
[16] A. Casini, M. C. Diawara, R. Scopelliti, S. M. Zakeeruddin, M. Grätzel, P. J. Dyson, Dalton Trans.2010, 39, 2239.10.1039/b921019aSearch in Google Scholar PubMed
[17] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature2012, 492, 234.10.1038/nature11687Search in Google Scholar PubMed
[18] M. Barquín, N. Cocera, M. J. G. Garmendia, L. Larrínaga, E. Pinilla, J. M. Seco, M. R. Torres, Inorg. Chim. Acta2010, 363, 127.10.1016/j.ica.2009.09.034Search in Google Scholar
[19] D. Schilter, J. K. Clegg, M. M. Harding, L. M. Rendina, Dalton Trans.2010, 39, 239.10.1039/B916579GSearch in Google Scholar
[20] C. B. Aakeroy, P. D. Chopade, C. Ganser, A. Rajbanshi, J. Desper, CrystEngComm2012, 14, 5845.10.1039/c2ce25516bSearch in Google Scholar
[21] D. Musumeci, C. A. Hunter, J. F. McCabe, Cryst. Growth Des.2010, 10, 1661.10.1021/cg901225bSearch in Google Scholar
[22] M. Kitamura, E. Umeda, K. Miki, Ind. Eng. Chem. Res.2012, 51, 12814.10.1021/ie300418qSearch in Google Scholar
[23] H. Morrison, B. P. Quan, S. D. Walker, K. B. Hansen, K. Nagapudi, S. Cui, Org. Process Res. Dev.2015, 19, 1842.10.1021/acs.oprd.5b00030Search in Google Scholar
[24] C.-H. Gu, H. Li, R. B. Gandhi, K. Raghavan, Int. J. Pharm.2004, 283, 117.10.1016/j.ijpharm.2004.06.021Search in Google Scholar PubMed
[25] T. Threlfall, Org. Process Res. Dev.2000, 4, 384.10.1021/op000058ySearch in Google Scholar
[26] P. Smart, Á. Bejarano-Villafuerte, L. Brammer, CrystEngComm2013, 15, 3151.10.1039/c3ce26890jSearch in Google Scholar
[27] C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev.2000, 100, 3553.10.1021/cr990376zSearch in Google Scholar PubMed
[28] R. Bishop, Aust. J. Chem.2012, 65, 1361.10.1071/CH12038Search in Google Scholar
[29] G. M. Sheldrick, Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[30] L. J. Farrugia, J. Appl. Crystallogr.1997, 30, 565.10.1107/S0021889897003117Search in Google Scholar
[31] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. R. Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr.2008, 41, 466.10.1107/S0021889807067908Search in Google Scholar
[32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, USA, 2009.Search in Google Scholar
[33] P. J. Hay, W. R. Wadt, J. Chem. Phys.1985, 82, 299.10.1063/1.448975Search in Google Scholar
[34] B. K. Koo, Bull. Korean Chem. Soc.2001, 22, 113.Search in Google Scholar
[35] S.-H. Zhang, Y.-M. Jiang, G.-Y, Zhang, L.-F. Ma, J. Guangxi Normal Univ.2004, 22, 53.Search in Google Scholar
[36] J. E. Bercaw, M. W. Day, S. R. Golisz, N. Hazari, L. M. Henling, J. A. Labinger, S. J. Schofer, S. Virgil, Organometallics2009, 28, 5017.10.1021/om900240aSearch in Google Scholar
[37] J. Nath, D. Kalita, J. B. Baruah, Polyhedron2011, 30, 2558.10.1016/j.poly.2011.07.010Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2097).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic
- Temperature induced twinning in aragonite: transmission electron microscopy experiments and ab initio calculations
- Organic
- Crystal structures, Hirsfeld surface analysis and a computational study of four ethyl 2-oxo-2H-chromene-3-carboxylate derivatives: a survey of organyl 2-oxo-2H-chromene-3-carboxylate structures
- Non-covalent interactions observed in nevirapinium pentaiodide hydrate which include the rare I4–I−···O=C halogen bonding
- Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid
- Competition between coordination bonds and hydrogen bonding interactions in solvatomorphs of copper(II), cadmium(II) and cobalt(II) complexes with 2,2′-bipyridyl and acetate
- Crystallographic Computing
- Stress, strain and Raman shifts
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic
- Temperature induced twinning in aragonite: transmission electron microscopy experiments and ab initio calculations
- Organic
- Crystal structures, Hirsfeld surface analysis and a computational study of four ethyl 2-oxo-2H-chromene-3-carboxylate derivatives: a survey of organyl 2-oxo-2H-chromene-3-carboxylate structures
- Non-covalent interactions observed in nevirapinium pentaiodide hydrate which include the rare I4–I−···O=C halogen bonding
- Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid
- Competition between coordination bonds and hydrogen bonding interactions in solvatomorphs of copper(II), cadmium(II) and cobalt(II) complexes with 2,2′-bipyridyl and acetate
- Crystallographic Computing
- Stress, strain and Raman shifts