Home Crystal structures, Hirsfeld surface analysis and a computational study of four ethyl 2-oxo-2H-chromene-3-carboxylate derivatives: a survey of organyl 2-oxo-2H-chromene-3-carboxylate structures
Article
Licensed
Unlicensed Requires Authentication

Crystal structures, Hirsfeld surface analysis and a computational study of four ethyl 2-oxo-2H-chromene-3-carboxylate derivatives: a survey of organyl 2-oxo-2H-chromene-3-carboxylate structures

  • Ligia R. Gomes , John N. Low EMAIL logo , Tanja van Mourik , Ligia S. da Silveira Pinto , Marcus V.N. de Souza and Jámes L. Wardell EMAIL logo
Published/Copyright: January 24, 2019

Abstract

Crystal structures, Hirshfeld surface analysis and a computational study have been carried out on 2-oxo-2H-chromene-3-carboxylates. Crystal structures are reported for ethyl R-2-oxo-2H-chromene-3-carboxylate derivatives, 2a: R=6-Me, 2b: 7-Me, 2c: 7-Me, 2d: R=7-MeO. In contrast to 2-oxo-2H-chromene-3-carboxamides, 1, in which classical intramolecular N–H···O hydrogen bonds stabilize planar structures and hinder rotation of the amido group out of the coumarin plane in 2, without an equivalent hydrogen bond, there is a greater rotational freedom of the carboxylate group. The interplanar angles between the coumarin core and its attached –C(O)–R substituent in crystalline 2a, 2b, 2c and 2d are 10.41(6), 36.65(6), 10.4(2) and 5.64(6)°, respectively, with distances between the carbonyl oxygen atoms of 2.8255(16), 2.9278(16), 4.226(2) and 2.8328(14) Å, respectively. A theoretical study of molecular conformations was carried out at the M06-2X density level with the 6-31+G(d) and aug-cc-pVTZ basis sets, in methanol solution modeled by PCM, indicated that the most stable conformations had the carbonyl group of the ester in the plane of the coumarin core: the s-cis arrangement of the ester carbonyl and the 2-oxo moieties being the slightly more stable than the s-trans form by less than 0.5 kcal/mol. The experimental conformations of 2a and 2d match well the low energy s-cis arrangement, and 2c matches the slightly lesser stable s-trans arrangement found in the theoretical study. A survey of the molecular conformations of more than 50 2H-chromene-3-carboxylates derivatives in the CCDC data base indicated two distinct groupings of conformations, s-cis and s-trans, each with interplanar angles <30°.

Acknowledgements

The authors thank the National Crystallographic Service, University of Southampton, UK, for the data collection, and for their help and advice. LRG thanks the Portuguese Foundation for Science and Technology (FCT) UID/Multi/04546/2013 for support. TvM is grateful to EaStCHEM for computational support via the EaStCHEM Research Computing Facility. JLW thanks CNPq, Brazil for support.

References

[1] M. Costa, T. A. Dias, A. Brito, F. Proenca, Eur. J. Med. Chem. 2016, 123, 487.10.1016/j.ejmech.2016.07.057Search in Google Scholar PubMed

[2] E. C. Gaudino, S. Tagliapietra, K. Martina, G. Palmisano, G. Cravotto, RSC Adv. 2016, 6, 46394.10.1039/C6RA07071JSearch in Google Scholar

[3] H. Wei, J. Ruan, X. Zhanga, RSC Adv.2016, 6, 846.10.1039/C5RA26294ASearch in Google Scholar

[4] B. J. Connell, S.-Y. Chang, E. Prakash, R. Yousfi, V. Mohan, W. Posch, D. Wilflingseder, C. Moog, E. N. Kodama, P. Clayette, PLoS One2016, 11, e0165386.10.1371/journal.pone.0165386Search in Google Scholar PubMed PubMed Central

[5] D. Yu, M. Suzuki, L. Xie, S. L. Morris-Natschke, K.-H. Lee, Med. Res. Rev. 2003, 23, 322.10.1002/med.10034Search in Google Scholar PubMed

[6] S. K. Yusufzai, H. H. Osman, M. S. Khan, S. Mohamad, O. Sulaiman, T. Parumasivam, J. A. Gansau, N. Johansah, Noviany, Med. Chem. Res. 2017, 26, 1139.10.1007/s00044-017-1820-2Search in Google Scholar

[7] G. X. Pang, C. Niu, N. Mamat, H. A. Aisa, Bioorg. Med. Chem. Lett.2017, 27, 2674.10.1016/j.bmcl.2017.04.039Search in Google Scholar PubMed

[8] J. Suthiwong, Y. Thongsri, C. Yenjai, Nat. Prod. Res.2017, 31, 453.10.1080/14786419.2016.1188100Search in Google Scholar PubMed

[9] G. Kirsch, A. B. Abdelwahab, P. Chaimbault, Molecules2016, 21, 322.10.3390/molecules21030322Search in Google Scholar PubMed PubMed Central

[10] V. T. Angelova, V. Valcheva, N. G. Vassilev, R. Buyukliev, G. Momekov, I. Dimitrov, L. Saso, M. Djukic, B. Shivachev, Bioorg. Med. Chem. Lett.2017, 27, 223.10.1016/j.bmcl.2016.11.071Search in Google Scholar PubMed

[11] R. S. Keni, B. S. Sasidhar, B. M. Nagaraja, M. A. Santos, Eur. J. Med. Chem. 2015, 100, 257.10.1016/j.ejmech.2015.06.017Search in Google Scholar PubMed

[12] S. Vazquez-Rodriguez, R. F. Guíñez, M. J. Matos, C. Olea-Azar, J. D. Maya, E. Uriarte, L. Santana, Med. Chem. 2016, 12, 537.10.2174/1573406412666160107111809Search in Google Scholar

[13] R. Pingaew, A. Saekee, P. Mandi, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawa, V. Prachayasittikul, Eur. J. Med. Chem. 2014, 85, 65.10.1016/j.ejmech.2014.07.087Search in Google Scholar PubMed

[14] P. Jithin Raj, D. Bahulayan, Tetrahedron Lett. 2017, 58, 2122.10.1016/j.tetlet.2017.04.052Search in Google Scholar

[15] A. Skoczynska, M. Małecka, M. Cieslak, J. Kazmierczak-Baranska, K. Krolewska-Golinska, A. Leniart, E. Budzisz, Polyhedron2017, 127, 307.10.1016/j.poly.2017.02.011Search in Google Scholar

[16] J. Dandriyal, R. Singla, M. Kumar, V. Jaitak, Eur. J. Med. Chem. 2016, 119, 141.10.1016/j.ejmech.2016.03.087Search in Google Scholar PubMed

[17] G. E. Escudero, C. H. Laino, G. A. Echeverría, O. E. Piro, N. Martini, A. N. Rodríguez, J. J. M. Medina, L. L. Tévez, E. G. Ferrer, P. A. M. Williams, Chem. Bio. Interactions2016, 249, 46.10.1016/j.cbi.2016.03.010Search in Google Scholar PubMed

[18] A. Montagut-Romans, M. Boulven, M. Jacolot, S. MoebsSanchez, C. Hascoët, A. Hammed, S. Besse, M. Lemaire, E. Benoit, V. Lattard, F. Popowycz, Bioorg. Med. Chem. Lett. 2017, 27, 1598.10.1016/j.bmcl.2017.02.017Search in Google Scholar PubMed

[19] G. Wang, J. Wang, D. He, X. Li, J. Li, Z. Peng, Chem. Bio. Drug. Des. 2017, 89, 456.10.1111/cbdd.12867Search in Google Scholar PubMed

[20] I. Hueso-Falcón, Á. Amesty, L. Anaissi-Afonso, I. Lorenzo Castrillejo, F. Machín, A. Estévez, Bioorg. Med. Chem. Letts. 2017, 27, 484.10.1016/j.bmcl.2016.12.040Search in Google Scholar PubMed

[21] J. Joubert, G. B. Foka, B. P. Repsold, D. W. Oliver, E. Kapp, S. F. Malan, Eur. J. Med. Chem. 2017, 125, 853.10.1016/j.ejmech.2016.09.041Search in Google Scholar PubMed

[22] S. Hamulakova, M. Kozurkova, K. Kuca, Curr. Org. Chem. 2017, 21, 502.10.2174/1385272820666160601155411Search in Google Scholar

[23] M. J. Matos, S. Vazquez-Rodriguez, A. Fonseca, E. Uriarte, L. Santana, F. Borges, Curr. Org. Chem. 2017, 21, 311.10.2174/1385272820666161017170652Search in Google Scholar

[24] M. J. Matos, P. Janeiro, R. M. F. Gonzalez, S. Vilar, N. P. Tatonetti, L. Santana, E. Uriarte, F. Borges, J. A. Fontenla, D. Vina, Future Med. Chem. 2014, 6, 371.10.4155/fmc.14.9Search in Google Scholar PubMed

[25] S. R. Trenor, A. R. Shultz, B. J. Love, T. E. Long, Chem. Rev. 2004, 104, 3059.10.1021/cr030037cSearch in Google Scholar PubMed

[26] Ş. N. K. Elmas, F. Ozen, K. Koran, I. Yilmaz, A. O. Gorgulu, S. Erdemir, J. Fluorescence2017, 27, 463.10.1007/s10895-016-1972-3Search in Google Scholar PubMed

[27] H. T. Srinivasa, H. N. Harishkumar, B. S. Palakshamurthy, J. Mol. Struct. 2017, 1131, 97.10.1016/j.molstruc.2016.11.047Search in Google Scholar

[28] W. H. Perkin, J. Chem. Soc. 1868, 21, 181.10.1039/JS8682100181Search in Google Scholar

[29] H. Pechmann, C. Duisberg, Ber. Dtsch. Chem. Ges. 1884, 17, 929.10.1002/cber.188401701248Search in Google Scholar

[30] E. Knoevenagel, Ber. Dtsch. Chem. Ges.1904, 37, 4461.10.1002/cber.19040370436Search in Google Scholar

[31] P.-H. E. Yao, S. Kumar, Y.-L. Liu, C.-P. E. Fang, C.-C. Liu, C.-M. Sun, Comb. Sci.2017, 19, 271.10.1021/acscombsci.7b00004Search in Google Scholar PubMed

[32] P. Priyanka, R. K. Sharma, D. Katiyar, Synthesis2016, 48, 2303.10.1055/s-0035-1560450Search in Google Scholar

[33] R. Pratap, V. J. Ram, Tetrahedron2017, 73, 2529.10.1016/j.tet.2017.02.028Search in Google Scholar

[34] L. S. da S. Pinto, M. V. N. de Souza, Synthesis2017, 49, 2677.10.1055/s-0036-1590201Search in Google Scholar

[35] L. R. Gomes, J. N. Low, F. Cagide, A. Gaspar, J Reis, F. Borges, Acta Crystallogr. 2013, B69, 294.10.1107/S2052519213009676Search in Google Scholar

[36] T. C. Baddeley, L. R. Gomes, J. N. Low, J. M. S. Skakle, A. B. Turner, J. L. Wardell, G. J. R. Watson, Z. Kristallogr. 2017, 232, 317.10.1515/zkri-2016-2020Search in Google Scholar

[37] W. T. Vellasco Junior, C. R. B. Gomes, T. R. A. Vasconcelos, J. L. Wardell, A. Otero-de-la-Roza, M. M. Jotani, E. R. T. Tiekink, Z. Kristallogr. 2016, 231, 663.10.1515/zkri-2016-1990Search in Google Scholar

[38] L. N. F. Cardoso, T. C. M. Noguiera, C. R. Kaiser, J. L. Wardell, S. M. S. V. Wardell, M. V. N. de Souza, Z. Kristallogr. 2016, 231, 167.10.1515/zkri-2015-1902Search in Google Scholar

[39] L. R. Gomes, J. N. Low, A. Fonseca, M. J. Matos, F. Borges, Acta Crystallogr. 2016, E72, 926.10.1107/S2056989016008665Search in Google Scholar

[40] L. R. Gomes, J. N. Low, A. Fonseca, M. J. Matos, F. Borges, Acta Crystallogr. 2016, E72, 1121.10.1107/S2056989016011026Search in Google Scholar

[41] L.-M. Song, J.-H. Gao, Jiegou Huaxue2014, 33, 57.Search in Google Scholar

[42] CrysAlis PRO 1.171.39.9g: Rigaku Oxford Diffraction, 2015.Search in Google Scholar

[43] G. M. Sheldrick, Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar

[44] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281.10.1107/S0021889811043202Search in Google Scholar

[45] G. M. Sheldrick, Crystal structure refinement with SHELXL7. Acta Crystallogr. 2015, C71, 3.10.1107/S2053229614024218Search in Google Scholar

[46] Mercury, CCDC 2017.Search in Google Scholar

[47] A. L. Spek, Acta Crystallogr. 2009, D65, 148.10.1107/S090744490804362XSearch in Google Scholar

[48] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, B. Kahr, Cryst. Growth Des.2008, 8, 4517.10.1021/cg8005212Search in Google Scholar

[49] S. K. Wolff, D. I. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer, The University of Western Australia, 2012.Search in Google Scholar

[50] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.10.1007/s00214-007-0310-xSearch in Google Scholar

[51] S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.10.1016/0301-0104(81)85090-2Search in Google Scholar

[52] T. H. Dunning Jr, J. Chem. Phys. 1989, 90, 1007.10.1063/1.456153Search in Google Scholar

[53] R. A. Kendall, T. H. Dunning Jr, R. J. Harrison, J Chem. Phys. 1992, 96, 6796.10.1063/1.462569Search in Google Scholar

[54] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09. Gaussian, Inc., Wallingford, CT, 2009.Search in Google Scholar

[55] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Angew. Chem. Int. Ed. Engl.1995, 14, 1555.10.1002/anie.199515551Search in Google Scholar

[56] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr.2016, B72, 171.10.1107/S2052520616003954Search in Google Scholar

[57] K. V. Sashidhara, M. Kumar, V. Khedgikar, P. Kushwaha, R. K. Modukuri, A. Kumar, J. Gautam, D. Singh, B. Sridhar, R. Trivedi, J. Med. Chem.2013, 56, 109.10.1021/jm301281eSearch in Google Scholar PubMed

[58] H. Takahashi, H. Takechi, K. Kubo, T. Matsumoto, Acta Crystallogr.2006, E62, o2553.10.1107/S1600536806018940Search in Google Scholar

[59] V. B. Nagaveni, S. Naveen, T. O. Shrungesh Kumar, M. N. Kumara, K. M. Mahadevan, N. K. Lokanath, Der Pharma Chemica. 2016, 8, 392.Search in Google Scholar

[60] Y.-F. Sun, S.-Y. Ma, D. Zhang, X.-L. Cheng, Yi.-X Kexue, Yu Guang Huaxue2008, 26, 393.Search in Google Scholar

[61] C.-L. Xu, S.-Y. Liu, C.-X. Wang, M.-Q. Zhao, Acta Crystallogr.2009, E65, o2817.10.1107/S1600536809041725Search in Google Scholar

[62] H. Moon, Q. P. Xuan, D. Kim, Y. Kim, J. W. Park, Cryst. Growth Des. 2014, 14, 6613.10.1021/cg501567sSearch in Google Scholar

[63] L.-C. Lo, J.-Y. Chen, C.-T. Yang, D.-S. Gu, Chirality2001, 13, 266.10.1002/chir.1029Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2117).


Received: 2018-07-08
Accepted: 2018-09-02
Published Online: 2019-01-24
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2018-2117/html
Scroll to top button