Startseite Role of defectivity on the crystallography of martensitic transformations in Ti50Ni40Cu10: an XRD investigation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of defectivity on the crystallography of martensitic transformations in Ti50Ni40Cu10: an XRD investigation

  • Mauro Coduri EMAIL logo , Carlo A. Biffi , Paola Bassani und Ausonio Tuissi
Veröffentlicht/Copyright: 21. November 2017

Abstract

Martensitic transformations in Ni50Ti40Cu10 are well known to proceed with a two-step process, from B2 austenite to monoclinic B19′ with intermediate orthorhombic B19. These transformations can be readily followed by X-ray diffraction especially in solution heat-treated materials through split and distribution of the main diffraction lines, while peaks broadening and overlap make the transformations more difficult to be described in highly defective materials. The present study addresses the effect of defects and chemical inhomogeneities on the martensitic transformation, placing particular emphasis on the crystallography of the low temperature B19 to B19′ phase transition. Lattice strains proved to be a powerful tool to monitor the martensitic transformations: whereas a clear discontinuity is observed for the solution heat-treated sample, defects promote a continuous progressive distortion from B19 to B19′. Calorimetry and internal friction investigations were added as a reference to verify the occurrence of the transformations and define the corresponding temperatures.

Acknowledgements

The authors acknowledge Mr. Giordano Carcano for his support in data collections.

References

[1] K. Otsuka, C. M. Wayman, Shape Memory Materials, Cambridge Univesity Press, 1998.Suche in Google Scholar

[2] T. Duerig, A. Pelton, D. Stockel, An overview of nitinol medical applications. Mater. Sci. Eng. A1999, 273–275, 149.10.1016/S0921-5093(99)00294-4Suche in Google Scholar

[3] N. Muhammad, D. Whitehead, A. Boor, W. Oppenlander, Z. Liu, L. Li, Picosecond laser micromachining of nitinol and platinum–iridium alloy for coronary stent applications. Appl. Phys. A2012, 106, 607.10.1007/s00339-011-6609-4Suche in Google Scholar

[4] M. Kohl, B. Krevet, E. Just, SMA microgripper system. Sens. Actuators A2002, 97–98, 646.10.1007/978-3-642-59497-7_169Suche in Google Scholar

[5] J. M. Jania, M. Leary, A. Subic, M. A. Gibson, Mater. Des.2013, 56, 1078.10.1016/j.matdes.2013.11.084Suche in Google Scholar

[6] Ch. Grossmann, J. Frenzel, V. Sampath, T. Depka. G. Eggeler, Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A2009, 40, 2530.10.1007/s11661-009-9958-2Suche in Google Scholar

[7] Y. Horiuchi, A. Ogawa, Y. Sakai, T. Sakuma, L.-B. Niu, H. Takaku, Corrosion behavior of Ti-Ni-Cu shape memory alloys for heat engine actuator in simulated geothermal waters. Trans. Mater. Res. Soc. Jpn.2004, 29, 3049.Suche in Google Scholar

[8] Y. C. Lo, S. K. Wu, A study on martensitic transformation in Ti50−x/2Ni50−x/2Cux alloys with X≤10 at%. J. Mater. Sci.1995, 30, 1577.10.1007/BF00375268Suche in Google Scholar

[9] T. H. Nam, T. Saburi, K. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater. Trans. JIM1990, 31, 959.10.2320/matertrans1989.31.959Suche in Google Scholar

[10] T. Kotil, H. Sehitoglu, H. J. Maier, Y. I. Chumlyakov, Transformation and detwinning induced electrical resistance variations in NiTiCu. Mater. Eng. A 2003, 359, 280.10.1016/S0921-5093(03)00365-4Suche in Google Scholar

[11] Ch. Grossman, J. Frenzel, V. Sampath, T. Depta, A. Oppenkowski, Ch. Somsen, K. Neuking, W. Theisen, G. Eggeler, Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Materialwiss. Werkstofftech.2008, 39, 499.10.1002/mawe.200800271Suche in Google Scholar

[12] R. Der Jean, J. B. Duh, The thermal cycling effect on Ti-Ni-Cu shape memory alloy. Scripta Met. Mater.1995, 32, 885.10.1016/0956-716X(95)93219-TSuche in Google Scholar

[13] C. A. Biffi, P. Bassani, M. Carnevale, N. Lecis, A. Loconte, B. Previtali, A. Tuissi, Effect of laser microcutting on thermo-mechanical properties of NiTiCu shape memory alloy. Met. Mater. Int.2014, 20, 83.10.1007/s12540-013-6011-1Suche in Google Scholar

[14] R. Schmidt, M. Schlereth, H. Wipf, W. Assmus, M. Mullner, Hydrogen solubility and diffusion in the shape-memory alloy NiTi. J. Phys. Condens. Matter1989, 1, 2473.10.1088/0953-8984/1/14/003Suche in Google Scholar

[15] A. Menushenkov, O. Grishina, A. Shelyakov, A. Yaroslavtsev, Y. Zubavichus, A. Veligzhanin, J. Bednarcik, R. Chernikov, N. Sitnikov, Local atomic and crystal structure rearrangement during the martensitic transformation in Ti50Ni25Cu25 shape memory alloy. J. Alloys Comp.2014, 585, 428.10.1016/j.jallcom.2013.09.096Suche in Google Scholar

[16] Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metall.1985, 33, 2049.10.1016/0001-6160(85)90128-2Suche in Google Scholar

[17] P. L. Popatov, S. E. Kulkova, A. V. Shelyakov, K. Okutsu, S. Miyazaki, D. Schryvers, Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics. J. Phys. IV France2003, 112, 727.10.1051/jp4:2003985Suche in Google Scholar

[18] Y. C. Lo, S. K. Wu, H. E. Horng, A study of B2↔B19↔B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall. Mater. 1993, 41, 747.10.1016/0956-7151(93)90007-FSuche in Google Scholar

[19] G. M. Michal, R. Sinclair, The structure of TiNi martensite. Acta Crystallogr. B 1981, 37, 1803.10.1107/S0567740881007292Suche in Google Scholar

[20] R. F. Hehemann, G. D. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi. Scr. Metall.1971, 5, 801.10.1016/0036-9748(71)90167-0Suche in Google Scholar

[21] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite. Phys. Stat. Sol.(a)1971, 5, 457.10.1002/pssa.2210050220Suche in Google Scholar

[22] X. Huang, G. J. Ackland, K. M. Rabe, Crystal structures and shape-memory behaviour of NiTi. Nature Mater.2003, 2, 307.10.1038/nmat884Suche in Google Scholar PubMed

[23] H. Sitepu, W. W. Schmahl, K. Stalick, Correction of intensities for preferred orientation in neutron-diffraction data of NiTi shape-memory alloy using the generalized spherical-harmonic description. Appl. Phys. A2002, 74, S1719.10.1007/s003390201840Suche in Google Scholar

[24] T. Roisnel, J. Rodríguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum2001, 378–381, 18.10.4028/www.scientific.net/MSF.378-381.118Suche in Google Scholar

[25] A. C. Larson, R. B. Von Dreele, General Structural Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004.Suche in Google Scholar

[26] Von Dreele, Quantitative texture analysis by Rietveld refinement. J. Appl. Crystallogr.1997, 30, 517.10.1107/S0021889897005918Suche in Google Scholar

[27] P. Bassani, S. Besseghini, Martensites in NiTi and NiTiCu alloys-NiTiCu shape memory alloy: superplastic elongation during thermal cycling. J. Phys. IV2001, 8, 381.10.1051/jp4:2001864Suche in Google Scholar

[28] A. Nespoli, F. Passaretti, E. Villa, Phase transition and mechanical damping properties: a DMTA study of NiTiCu shape memory alloys. Intermetallics2013, 32, 394.10.1016/j.intermet.2012.09.005Suche in Google Scholar

[29] I. Yoshida, D. Monma, K. Iino, K. Otsuka, M. Asai, H. Tsuzuki, Damping properties of Ti50Ni50xCux alloys utilizing martensitic transformation. J. Alloys Comp.2003, 355, 79.10.1016/S0925-8388(03)00280-9Suche in Google Scholar

[30] A. Ahadi, Q. Sun, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater.2015, 90, 272.10.1016/j.actamat.2015.02.024Suche in Google Scholar

[31] K. Bhattacharya, Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, First. Oxford, New York, 2003.10.1093/oso/9780198509349.001.0001Suche in Google Scholar

[32] J. Cui, Y. S. Chu, O. O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Mater.2006, 5, 286.10.1038/nmat1593Suche in Google Scholar PubMed

[33] W. Bührer, R. Gotthardt, A. Kulik, O. Mercier, F. Staub, Powder neutron diffraction study of nickel-titanium martensite. J. Phys. F1983, 13, 77.10.1088/0305-4608/13/5/002Suche in Google Scholar

[34] H. Miyamoto, T. Taniwaki, T. Ohba, K. Otsuka, S. Nishigori, K. Kato, Two-stage B2–B19–B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation. Scr. Mater.2005, 53, 171.10.1016/j.scriptamat.2005.03.044Suche in Google Scholar

[35] S. Miyazaki, A. Ishida, Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Mater. Sci. Eng. A1999, 273–275, 106.10.1016/S0921-5093(99)00292-0Suche in Google Scholar

[36] R. H. Bricknell, K. N. Melton, Thin foil electron microscope observations on NiTiCu shape memory alloys. Metall. Trans. A1980, 11, 1541.10.1007/BF02654517Suche in Google Scholar

[37] W. J. Moberly, J. L. Proft, T. W. Duerig, R. Sinclair, Twinless martensite in TiNiCu shape memory alloys. Mater. Sci. Forum1991, 56–58, 605.10.4028/www.scientific.net/MSF.56-58.605Suche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2096).


Received: 2017-8-17
Accepted: 2017-10-22
Published Online: 2017-11-21
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2096/html
Button zum nach oben scrollen