Startseite Dengue virus 3 NS5 methyltransferase domain: expression, purification, crystallization and first structural data from microcrystalline specimens
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dengue virus 3 NS5 methyltransferase domain: expression, purification, crystallization and first structural data from microcrystalline specimens

  • Alexandros Valmas , Stavroula Fili , Nikos Nikolopoulos , Maria Spiliopoulou , Magdalini Christopoulou , Fotini Karavassili , Christos Kosinas , Konstantinos Bastalias , Eleftheria Rosmaraki , Julie Lichiére , Andrew Fitch , Detlef Beckers , Thomas Degen , Nicolas Papageorgiou , Bruno Canard , Bruno Coutard und Irene Margiolaki EMAIL logo
Veröffentlicht/Copyright: 2. November 2017

Abstract

Flavivirus infections often provoke life-threatening diseases of epidemic magnitudes, thus extensive research is currently directed towards the development of efficient vaccines and approved antiviral compounds. We present here the expression, purification, crystallization and preliminary X-ray diffraction analysis of one of the components of the flavivirus replication complex, the non-structural protein 5 (NS5) mRNA methyltransferase (MTase) domain, from an emerging pathogenic flavivirus, dengue virus 3 (DEN3). Polycrystalline precipitates of DEN3 NS5 MTase, suitable for X-ray powder diffraction (XRPD) measurements, were produced in the presence of PEG 8000 (25–32.5% (w/v)), 0.1 M Tris-Amino, in a pH range from 7.0 to 8.0. A polymorph of orthorhombic symmetry (space group: P21212, a=61.9 Å, b=189.6 Å, c=52.4 Å) was identified via XRPD. These results are the first step towards the complete structural determination of this molecule via XRPD and a parallel demonstration of the applicability of the method.

Acknowledgements

We would like to thank the ESRF for provision of beamtime at the ID22 beamline and Dr. Jonathan P. Wright (ID11) for his multiannual scientific collaboration. We would like also to thank PANalytical for instrumentation and software support and, the European Virus Archive goes Global (EVAg) (European Union H2020 Grant Agreement No 653316) for providing the expression plasmid. This research has been financially supported by General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 2467) and co-financed by the following grants: the European Union (European Social Fund) in collaboration with Greek State, under the ‘ARISTEIA II’ Action (MIS Code 4659) of the ‘Operational Program Education And Lifelong Learning’, the European Union (European Regional Development Fund – ERDF) and Greek national funds through the Operational Program ‘Regional Operational Program’ of the National Strategic Reference Framework (NSRF), the International Atomic Energy Agency (CRP code F12024) and the COST Action (CM1306). Finally, the company NanoMEGAS supported this work.

References

[1] T. Solomon, M. Mallewa, Dengue and other emerging flaviviruses. J. Infect.2001, 42, 104.10.1053/jinf.2001.0802Suche in Google Scholar PubMed

[2] D. H. Simpson, Arboviruses, in Manson’s Tropical Diseases (Ed. G. Cook), Saunders, London, 1996.Suche in Google Scholar

[3] G. N. Malavige, S. Fernando, D. J. Fernando, S. L. Seneviratne, Dengue viral infections. Postgrad. Med. J.2004, 80, 588.10.1136/pgmj.2004.019638Suche in Google Scholar PubMed PubMed Central

[4] M. G. Guzman, S. B. Halstead, H. Artsob, P. Buchy, J. Farrar, D. J. Gubler, E. Hunsperger, A. Kroeger, H. S. Margolis, E. Martínez, M. B. Nathan, J. L. Pelegrino, C. Simmons, S. Yoksan, R. W. Peeling, Dengue: a continuing global threat. Nat. Rev. Microbiol.2010, 8, S7.10.1038/nrmicro2460Suche in Google Scholar PubMed PubMed Central

[5] S. J. Wu, G.-G. Vogel, W. Sun, J. R. Mascola, E. Brachtel, R. Putvatana, M. K. Louder, L. Filgueira, M. A. Marovich, H. K. Wong, A. Blauvelt, G. S. Murphy, M. L. Robb, B. L. Innes, D. L. Birx, C. G. Hayes, S. S. Frankel. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med.2000, 6, 816.10.1038/77553Suche in Google Scholar PubMed

[6] K. Jessie, M. Y. Fong, S. Devi, S. K. Lam, K. T. Wong, Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J. Infect. Dis.2004, 189, 1411.10.1086/383043Suche in Google Scholar PubMed

[7] J. F. Siler, M. W. Hall, A. Hitchens, Dengue: its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention. Phil. J. Sci.1926, 29, 1.Suche in Google Scholar

[8] M. G. Guzman, G. P. Kouri, J. Bravo, M. Soler, S. Vazquez, L. Morier, Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am. J. Trop. Med. Hyg.1990, 42, 179.10.4269/ajtmh.1990.42.179Suche in Google Scholar PubMed

[9] M. G. Guzman, G. Kouri, L. Valdes, J. Bravo, M. Alvarez, S. Vazques, I. Delgado, S. B. Halstead, Epidemiologic studies on Dengue in Santiago De Cuba, 1997. Am. J. Epidemiol.2000, 152, 793.10.1093/aje/152.9.793Suche in Google Scholar PubMed

[10] E. G. Westaway, M. A. Brinton, S. Ya. Gaidamovich, M. C. Horzinek, A. Igarashi, L. Kääriäinen, D. K. Lvov, J. S. Porterfield, P. K. Russell, D. W. Trent, Flaviviridae. Intervirology1985, 24, 183.10.1159/000149642Suche in Google Scholar PubMed

[11] A. Cahour, B. Falgout, C. J. Lai, Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J. Virol.1992, 66, 1535.10.1128/jvi.66.3.1535-1542.1992Suche in Google Scholar PubMed PubMed Central

[12] P. Després, M. P. Frenkiel, V. Deubel, Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology1993, 196, 209.10.1006/viro.1993.1469Suche in Google Scholar PubMed

[13] B. Coutard, E. Decroly, C. Li, A. Sharff, J. Lescar, G. Bricogne, K. Barral, Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res.2014, 106, 61.10.1016/j.antiviral.2014.03.013Suche in Google Scholar PubMed

[14] H. Hannemann, P. Y. Sung, H. C. Chiu, A. Yousuf, J. Bird, S. P. Lim, A. D. Davidson, Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J. Biol. Chem.2013, 288, 22621.10.1074/jbc.M113.481382Suche in Google Scholar PubMed PubMed Central

[15] R. Perera, R. J. Kuhn, Structural proteomics of dengue virus. Curr. Opin. Microbiol.2008, 11, 369.10.1016/j.mib.2008.06.004Suche in Google Scholar PubMed PubMed Central

[16] H. P. Dong, D. C. Chang, X. P. Xie, Y. X. Toh, K. Y. Chung, G. Zou, J. Lescar, S. P. Lim, P. Y. Shi, Biochemical and genetic characterization of dengue virus methyltransferase. Virology2010, 405, 568.10.1016/j.virol.2010.06.039Suche in Google Scholar PubMed

[17] M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, B. Canard, An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J.2002, 21, 2757.10.1093/emboj/21.11.2757Suche in Google Scholar PubMed PubMed Central

[18] T. L. Yap, T. Xu, Y. L. Chen, H. Malet, M. P. Egloff, B. Canard, S. G. Vasudevan, J. Lescar, Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-Angstrom resolution. J. Virol.2007, 81, 4753.10.1128/JVI.02283-06Suche in Google Scholar PubMed PubMed Central

[19] Y. Zhao, T. S. Soh, J. Zheng, K. W. Chan, W. W. Phoo, C. C. Lee, M. Y. Tay, K. Swaminathan, T. C. Cornvik, S. P. Lim, P. Y. Shi, J. Lescar, S. G. Vasudevan, D. Luo, A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog.2015, 11, e1004682.10.1371/journal.ppat.1004682Suche in Google Scholar PubMed PubMed Central

[20] F. Benmansour, I. Trist, B. Coutard, E. Decroly, G. Querat, A. Brancale, K. Barral, Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur. J. Med. Chem.2017, 125, 865.10.1016/j.ejmech.2016.10.007Suche in Google Scholar PubMed

[21] M. Norrman, K. Ståhl, G. Schluckebier, S. Al-Karadaghi, Characterization of insulin microcrystals using powder diffraction and multivariate data analysis. J. Appl. Crystallogr.2006, 39, 391.10.1107/S0021889806011058Suche in Google Scholar

[22] I. Collings, Y. Watier, M. Giffard, S. Dagogo, R. Kahn, F. Bonneté, J. P. Wright, A. N. Fitch, I. Margiolaki, Polymorphism of microcrystalline urate oxidase from Aspergillus flavus. Acta Crystallogr.2010, D66, 539.10.1107/S0907444910005354Suche in Google Scholar

[23] N. Papageorgiou, Y. Watier, L. Saunders, B. Coutard, V. Lantez, E. A. Gould, A. N. Fitch, J. P. Wright, B. Canard, I. Margiolaki, Preliminary insights into the non-structural protein 3 macro domain of the Mayaro virus by powder diffraction. Z. Kristallogr.2010, 225, 576.10.1524/zkri.2010.1348Suche in Google Scholar

[24] F. Karavassili, A. E. Giannopoulou, E. Kotsiliti, L. Knight, M. Norrman, G. Schluckebier, L. Drube, A. N. Fitch, J. P. Wright, I. Margiolaki, Structural studies of human insulin cocrystallized with phenol or resorcinol via powder diffraction. Acta Crystallogr.2012, D68, 1632.10.1107/S0907444912039339Suche in Google Scholar

[25] A. Valmas, K. Magiouf, S. Fili, M. Norrman, G. Schluckebier, D. Beckers, T. Degen, J. Wright, A. Fitch, F. Gozzo, A. E. Giannopoulou, F. Karavassili, I. Margiolaki, Novel crystalline phase and first-order phase transitions of human insulin complexed with two distinct phenol derivatives. Acta Crystallogr.2015, D71, 819.10.1107/S1399004715001376Suche in Google Scholar PubMed

[26] S. Fili, A. Valmas, M. Norrman, G. Schluckebier, D. Beckers, T. Degen, J. Wright, A. Fitch, F. Gozzo, A. E. Giannopoulou, F. Karavassili, I. Margiolaki, Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol. IUCrJ.2015, 2, 534.10.1107/S2052252515013159Suche in Google Scholar PubMed PubMed Central

[27] S. Fili, A. Valmas, M. Christopoulou, M. Spiliopoulou, N. Nikolopoulos, J. Lichiére, S. Logotheti, F. Karavassili, E. Rosmaraki, A. Fitch, J. P. Wright, D. Beckers, T. Degen, G. Nénert, R. Hilgenfeld, N. Papageorgiou, B. Canard, B. Coutard, I. Margiolaki, Coxsackievirus B3 protease 3C: expression, purification, crystallization and preliminary structural insights. Acta Crystallogr. F2016, 72, 877.10.1107/S2053230X16018513Suche in Google Scholar PubMed PubMed Central

[28] I. Margiolaki, J. P. Wright, Powder crystallography on macromolecules. Acta Crystallogr.2007, A64, 169.10.1107/S0108767307043735Suche in Google Scholar PubMed

[29] F. Karavassili, I. Margiolaki, Macromolecular powder diffraction: ready for genuine biological problems. Protein Pept. Lett.2016, 23, 232.10.2174/0929866523666160120152839Suche in Google Scholar PubMed

[30] S. Basso, A. N. Fitch, G. C. Fox, I. Margiolaki, J. P. Wright, High-throughput phase-diagram mapping via powder diffraction: a case study of HEWL versus pH. Acta Crystallogr.2005, D61, 1612.10.1107/S0907444905031963Suche in Google Scholar

[31] I. Margiolaki, J. P. Wright, M. Wilmanns, A. N. Fitch, N. Pinotsis, Second SH3 domain of ponsin solved from powder diffraction. J. Am. Chem. Soc.2007, 129, 11865.10.1021/ja073846cSuche in Google Scholar PubMed

[32] I. Margiolaki, A. E. Giannopoulou, J. P. Wright, L. Knight, M. Norrman, G. Schluckebier, A. N. Fitch, R. B. Von Dreele, High-resolution powder X-ray data reveal the T6 hexameric form of bovine insulin. Acta Crystallogr.2013, D69, 978.10.1107/S0907444913003867Suche in Google Scholar

[33] R. B. Von Dreele. Combined Rietveld and stereochemical restraint refinement of a protein crystal structure. J. Appl. Crystallogr.1999, 32, 1084.10.1107/S002188989901064XSuche in Google Scholar

[34] F. Hofmeister. Zur Lehre von der Wirkung der Salze – Zweite Mittheilung.-About the science of the effect of salts. Arch. Exp. Pathol. Phar.1888, 24, 247.10.1007/BF01918191Suche in Google Scholar

[35] A. Fitch, The high resolution powder diffraction beam line at ESRF. J. Res. Natl. Inst. Stand. Technol.2004, 109, 133.10.6028/jres.109.010Suche in Google Scholar PubMed PubMed Central

[36] A. Boultif, D. Louër, Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr.1991, 24, 987.10.1107/S0021889891006441Suche in Google Scholar

[37] W. I. F. David, K. Shankland, J. Van De Streek, E. Pidcock, W. D. S. Motherwell, J. C. Cole, DASH: a program for crystal structure determination from powder diffraction data. J. Appl. Crystallogr.2006, 39, 910.10.1107/S0021889806042117Suche in Google Scholar

[38] G. S. Pawley, Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr.1981, 14, 357.10.1107/S0021889881009618Suche in Google Scholar

[39] J. P. Wright, Extraction and use of correlated integrated intensities with powder diffraction data. Z. Kristallogr.2004, 219, 791.10.1524/zkri.219.12.791.55857Suche in Google Scholar

[40] B. W. Matthews, Solvent content of protein crystals. J. Mol. Biol.1968, 33, 491.10.1016/0022-2836(68)90205-2Suche in Google Scholar

[41] K. A. Kantardjieff, B. Rupp. Matthews’ coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals. Protein Sci.2003, 12, 1865.10.1110/ps.0350503Suche in Google Scholar

[42] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori. On the number of statistically independent observations in a powder diffraction pattern. J. Appl. Crystallogr.1995, 28, 738.10.1107/S0021889895009757Suche in Google Scholar

[43] W. I. F. David. On the equivalence of the Rietveld method and the correlated integrated intensities method in powder diffraction. J. Appl. Crystallogr.2004, 37, 621.10.1107/S0021889804013184Suche in Google Scholar

[44] R. B. Von Dreele, Protein crystal structure analysis from high-resolution X-ray powder-diffraction data. Methods Enzymol.2003, 368, 254.10.1016/S0076-6879(03)68014-6Suche in Google Scholar

[45] I. Margiolaki, J. P. Wright, A. N. Fitch, G. C. Fox, R. B. Von Dreele, Synchrotron X-ray powder diffraction study of Turkey egg-white Lysozyme. Acta Crystallogr.2005, D61, 423.10.1107/S0907444905001393Suche in Google Scholar PubMed

[46] R. B. Von Dreele, Binding of N-acetylglucosamine oligosaccharides to hen egg-white lysozyme: a powder diffraction study. Acta Crystallogr.2005, D61, 22.10.1107/S0907444904025715Suche in Google Scholar PubMed

[47] D. Beckers, T. Degen, G. Nénert, S. Saslis, S. Logotheti, F. Karavassili, A. Valmas, I. Margiolaki, Humidity-induced phase transitions of HEW lysozyme investigated by microcrystalline powder diffraction on a laboratory system. Acta Crystallogr.2015, A71, s510.10.1107/S2053273315092451Suche in Google Scholar

[48] B. Coutard, K. Barral, J. Lichière, B. Selisko, B. Martin, W. Aouadi, O. M. Lombardia, F. Debart, J. J. Vasseur, J. C. Guillemot, B. Canard, E. Decroly, The Zika virus methyltransferase: structure and functions for drug design perspectives. J. Virol.2017, 91, e02202.10.1128/JVI.02202-16Suche in Google Scholar PubMed PubMed Central

Received: 2017-7-25
Accepted: 2017-9-25
Published Online: 2017-11-2
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2091/html
Button zum nach oben scrollen