Startseite A new Z′=(2+0.5+0.5) amidophosphoester structure: Hirshfeld surface analysis of symmetry-independent molecules
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A new Z′=(2+0.5+0.5) amidophosphoester structure: Hirshfeld surface analysis of symmetry-independent molecules

  • Mojtaba Keikha , Mehrdad Pourayoubi EMAIL logo , Atekeh Tarahhomi und Arie van der Lee EMAIL logo
Veröffentlicht/Copyright: 13. März 2017

Abstract

Tetraethyl 1,3-phenylenebis(phosphoramidate) was synthesized and characterized by 1H, 13C, 31P NMR, IR and mass spectroscopies. The asymmetric unit is composed of two half-molecules, each residing on a two-fold axis, and two complete molecules, thus leading to a Z′=(2+0.5+0.5)=3 structure. The most plausible explanation for the occurrence of multiple independent molecules is a frustration between relatively strong hydrogen bond interactions and weaker CH···π interactions. In each of the molecules, the P atoms are in a similar distorted tetrahedral environment. The N atoms bonded to P atoms have mainly sp2 character tending towards a planar environment. In the crystal structure, the phosphoryl O atoms are involved in classical N–H···O=P and weaker C–H···O=P hydrogen bonds as (N–H)(C–H) ···O=P, acting as a double hydrogen-bond acceptor. These hydrogen bonds along with other C–H···O hydrogen bonds and C–H···π interactions create a 3D crystalline network. Hirshfeld surfaces and two-dimensional (2D) fingerprint plots are calculated for analyzing intermolecular interactions in each of the independent molecules of the title compound. For all four independent molecules, the contribution of H···H contacts to the total interactions is decisive, being larger than 60% for each molecule. The O···H/H···O contacts are the characteristic intermolecular contacts in the corresponding molecules. Furthermore, the C···H/H···C, including the C–H···π interactions, and N···H/H···N contacts cover other intermolecular contacts in the crystal lattice.

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

[1] D. Barak, A. Ordentlich, D. Kaplan, R. Barak, D. Mizrahi, C. Kronman, Y. Segall, B. Velan, A. Shafferman, Evidence for P−N bond scission in phosphoroamidate nerve agent adducts of human acetylcholinesterase. Biochemistry2000, 39, 1156.10.1021/bi992009nSuche in Google Scholar

[2] P. Kannan, K. Kishore, Novel flame retardant polyphosphoramide esters. Polymer1992, 33, 418.10.1016/0032-3861(92)91002-JSuche in Google Scholar

[3] C. McGuigan, J.-C. Thiery, F. Daverio, W. G. Jiang, G. Davies, M. Mason, Anti-cancer ProTides: tuning the activity of BVDU phosphoramidates related to thymectacin. Bioorg. Med. Chem.2005, 13, 3219.10.1016/j.bmc.2005.02.041Suche in Google Scholar PubMed

[4] N. Venkatesan, S. J. Kim, B. H. Kim, Novel Phosphoramidite building blocks in synthesis and applications toward modified oligonucleotides. Curr. Med. Chem.2003, 10, 1973.10.2174/0929867033456909Suche in Google Scholar PubMed

[5] F. Hammerschmidt, M. Hanbauer, Transformation of arylmethylamines into α-aminophosphonic acids via metalated phosphoramidates: rearrangement of partly configurationally stable N-phosphorylated α-aminocarbanions. J. Org. Chem. 2000, 65, 6121.10.1021/jo000585fSuche in Google Scholar PubMed

[6] P. Müller, R. Herbst-Irmer, A. Spek, T. Schneider, M. Sawaya, in Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL, (Eds. P. Müller) Oxford science publications, ch. 5, p. 58, 2006.10.1093/acprof:oso/9780198570769.001.0001Suche in Google Scholar

[7] M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm2009, 11, 19.10.1039/B818330ASuche in Google Scholar

[8] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B2004, 60, 627.10.1107/S0108768104020300Suche in Google Scholar PubMed

[9] J. J. McKinnon, F. P. A. Fabbiani, M. A. Spackman, Comparison of polymorphic molecular crystal structures through Hirshfeld surface analysis. Cryst. Growth Des.2007, 7, 755.10.1021/cg060773kSuche in Google Scholar

[10] Agilent, CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England, 2011.Suche in Google Scholar

[11] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487.10.1107/S0021889803021800Suche in Google Scholar

[12] L. Palatinus, G. Chapuis, SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Suche in Google Scholar

[13] R. I. Cooper, A. L. Thompson, D. J. Watkin, CRYSTALS enhancements: dealing with hydrogen atoms in refinements. J. Appl. Crystallogr.2010, 43, 1100.10.1107/S0021889810025598Suche in Google Scholar

[14] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, Mercury CSD 2.0 new features for the visualization and investigation of crystal structure. J. Appl. Crystallogr.2008, 41, 466.10.1107/S0021889807067908Suche in Google Scholar

[15] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSuche in Google Scholar PubMed PubMed Central

[16] F. Sabbaghi, M. Pourayoubi, P. Zargaran, Diphenyl (o-tolylamido)phosphonate. Acta Crystallogr. E2011, 67, o1170.10.1107/S1600536811013924Suche in Google Scholar PubMed PubMed Central

[17] M. Pourayoubi, M. Nečas, M. Negari, The double H-atom acceptability of the P=O group in new XP(O)(NHCH2C6H4-2-Cl)2 phosphoramidates [X=C6H5O– and CF3C(O)NH–]: a database analysis of compounds having a P(O)(NHR) group. Acta Crystallogr. C2012, 68, o51.10.1107/S0108270111052097Suche in Google Scholar PubMed

[18] K. M. Anderson, M. R. Probert, A. E. Goeta, J. W. Steed, Size does matter the contribution of molecular volume, shape and flexibility to the formation of co-crystals and structures with Z′>1. CrystEngComm2011, 13, 83.10.1039/C0CE00172DSuche in Google Scholar

[19] K. M. Anderson, A. E. Goeta, K. S. B. Hancock, J. W. Steed, Unusual variations in the incidence of Z′>1 in oxo-anion structures. Chem. Commun.2006, 2138.10.1039/b602492kSuche in Google Scholar PubMed

[20] K. M. Anderson, K. Afarinkia, H.-w. Yu, A. E. Goeta, J. W. Steed, When Z′=2 is better than Z′=1 supramolecular centrosymmetric hydrogen-bonded dimers in chiral systems. Cryst. Growth Des.2006, 6, 2109.10.1021/cg0603265Suche in Google Scholar

[21] C. A. Zentner, H. W. H. Lai, J. T. Greenfield, R. A. Wiscons, M. Zeller, C. F. Campana, O. Talu, S. A. FitzGerald, J. L. C. Rowsell, High surface area and Z′ in a thermally stable 8-fold polycatenated hydrogen-bonded framework. Chem. Commun.2015, 51, 11642.10.1039/C5CC04219DSuche in Google Scholar PubMed

[22] M. L. Connolly, The molecular surface package. J. Mol. Graphics1993, 11, 139.10.1016/0263-7855(93)87010-3Suche in Google Scholar

[23] A. D. Martin, J. Britton, T. L. Easun, A. J. Blake, W. Lewis, M. Schröder, Hirshfeld surface investigation of structure-directing interactions within dipicolinic acid derivatives. Cryst. Growth Des.2015, 15, 1697.10.1021/cg5016934Suche in Google Scholar PubMed PubMed Central

[24] H. F. Clausen, M. S. Chevallier, M. A. Spackman, B. B. Iversen, Three new co-crystals of hydroquinone: crystal structures and Hirshfeld surface analysis of intermolecular interactions. New J. Chem.2010, 34, 193.10.1039/B9NJ00463GSuche in Google Scholar

[25] F. P. A. Fabbiani, C. K. Leech, K. Shankland, A. Johnston, P. Fernandes, A. J. Florence, N. Shankland, Hirshfeld surface analysis of two bendroflumethiazide solvates. Acta Crystallogr. C2007, 63, o659.10.1107/S0108270107044812Suche in Google Scholar PubMed

[26] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer 3.1, University of Western Australia, Crawley, Australia, 2013.Suche in Google Scholar

[27] M. A. Spackman, J. J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm2002, 4, 378.10.1039/B203191BSuche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zkri-2016-2032).


Received: 2016-12-13
Accepted: 2017-2-6
Published Online: 2017-3-13
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-2032/html
Button zum nach oben scrollen