Home Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
Article
Licensed
Unlicensed Requires Authentication

Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates

  • Martin Albat , Andrew Kentaro Inge and Norbert Stock EMAIL logo
Published/Copyright: January 20, 2017

Abstract

Three new bismuth arylsulfonatocarboxylates [Bi(OH)(SB)] (1), [Bi4(ST)2(HST)O2(H2O)2]·H2O (2) and [Bi4(ST)2O3(H2O)2] (3) were synthesized under solvothermal reaction conditions at 180°C using the potassium or sodium salt of 4-sulfobenzoic acid (H2SB) and 2-sulfoterephthalic acid (H3ST), respectively. The compounds were characterized in detail and the crystal structures were determined from single crystal X-ray diffraction data. Phase purity was confirmed by powder X-ray diffraction and elemental analysis. Structural comparisons to the only three other known bismuth sulfonatocarboxylates are presented. Due to the higher reaction temperatures employed for the synthesis of the title compounds a higher degree of condensation of the BiOx polyhedra (X=7 or 8) to tetrameric units, 1D chains or a 2D layer is observed. Connection through the organic linker molecules leads to the formation of 3D coordination polymers in all three title compounds.

Acknowledgements

A.K.I. is supported by the Knut and Alice Wallenberg Foundation (KAW) through the MAX IV postdoctoral scholarship. Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the priority program 1415 “Crystalline Non-Equilibrium Phases” is greatfully acknowledged.

References

[1] X. Zhang, S. Yin, R. Qiu, J. Xia, W. Dai, Z. Yu, Synthesis and structure of an air-stable hypervalent organobismuth (III) perluoreooctanesulfonate and its use as high-efficency catalyst for Mannich-type reactions in water. J. Organ. Chem.2009, 694, 3559.10.1016/j.jorganchem.2009.07.018Search in Google Scholar

[2] S. Mazières, C. Le Roux, M. Peyronneau, H. Gornitzka, N. Ropues, Structural characterization of bismuth(III) and antimony(III) chlorotriflates: key intermediates in catalytic Friedel-Crafts transformations. Eur. J. Inorg. Chem. 2004, 14, 2823.10.1002/ejic.200400281Search in Google Scholar

[3] M. Schlesinger, L. Miersch, T. Rüffler, H. Lang, M. Mehring, Two novel nanoscaled bismuth oxido clusters. Main Group Met. Chem. 2013, 36, 11.Search in Google Scholar

[4] P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Remarkable in vitro bactericidal activity of bismuth (III) sulfonates against Helicobacter pylori. Dalton Trans. 2012, 41, 11798.10.1039/c2dt31360jSearch in Google Scholar PubMed

[5] P. C. Andrews, G. B. Deacon, R. L. Ferrero, P. C. Junk, A. Karrar, I. Kumar, J. G. MacLellan, Bismuth(III) 5-sulfosalicylate complexes: structures, solubility and activity against Helicopacter pylori. Dalton Trans. 2009, 32, 6377.10.1039/b900774aSearch in Google Scholar PubMed

[6] M. Busse, I. Trinh, P. C. Junk, R. L. Ferrero, P. C. Andrews, Synthesis and characterisation of Bismuth(III) aminoarenesulfonate complexes and their powerfull bactericidal activity against Helicobacter pylori. Chem. Eur. J. 2013, 19, 5264.10.1002/chem.201204220Search in Google Scholar PubMed

[7] P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, K. K. Huynh, I. Kumar, J. G. MacLellan, Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against Helicobacter pylori. Dalton Trans. 2010, 39, 9633.10.1039/c0dt00629gSearch in Google Scholar PubMed

[8] Y. Yang, R. Ouyang, L. Xu, N. Guo, W. Li, K. Feng, L. Ouyang, Z. Yang, S. Zhou, Y. Miao, Review: Bismuth complexes: synthesis and applications in biomedicine. J. Coord. Chem. 2015, 3, 379.10.1080/00958972.2014.999672Search in Google Scholar

[9] V. Stavila, R. L. Davidovich, A. Gulea, K. H. Whitm, Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure. Coord. Chem. Rev. 2006, 250, 2782.10.1016/j.ccr.2006.02.032Search in Google Scholar

[10] A. K. Inge, M. Köppen, J. Su, M. Feyand, H. Xu, X. Zou, M. O’Keeffe, N. Stock, Unprecedented topological complexity in a metal–organic framework constructed from simple building units. J. Am. Chem. Soc. 2016, 138, 1970.10.1021/jacs.5b12484Search in Google Scholar PubMed

[11] M. Feyand, M. Köppen, G. Friedrichs, N. Stock, Bismuth tri- and tetraarylcarboxylates: crystal structures, in situ X-ray diffraction, intermediates and luminescence. Eur. J.2013, 37, 12537.10.1002/chem.201301139Search in Google Scholar PubMed

[12] M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth–metal–organic framework. Angew. Chem. 2012, 124, 10519.10.1002/ange.201204963Search in Google Scholar

[13] M. Savage, S. Yang, M. Suyetin, E. Bichoutskaia, W. Lewis, A. J. Blake, S. A. Barnett, M. Schröder, A novel bismuth-based metal–organic framework for high volumetric methane and carbon dioxide adsorption. Chem. Eur. J. 2014, 268024.10.1002/chem.201304799Search in Google Scholar PubMed

[14] S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R. McDonald, M. J. Ferguson, Bipyridine complexes of E3+ (E=P, As, Sb, Bi): strong Lewis acids, sources of E(OTf)3 and synthons for EI and EV cations. Chem. Sci. 2015, 6, 6545.10.1039/C6SC90005DSearch in Google Scholar PubMed PubMed Central

[15] M. Goswami, A. Ellern, N. L. B. Pohl, Bismuth(V)-mediated thioglycosid actication. Angew. Chem. 2013, 125, 8599.10.1002/ange.201304099Search in Google Scholar

[16] R. Rüther, F. Huber, H. Preut, Triorganoantimon- und triorganobismutdisulfonate kristall- und molekülstrukturen von (C6H5)3M(O3SC6H5)2 (M=Sb, Bi). Z. Anorg. Allg. Chem. 1986, 539, 110.10.1002/zaac.19865390811Search in Google Scholar

[17] M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, Synthesis and molecular structure of the novel bismuth(III) sulfonate complex [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)·DMSO·2H2O. Main Group Met. Chem.2012, 35, 135.10.1515/mgmc-2012-0049Search in Google Scholar

[18] S. S. Chitnis, N. Burford, A. Decken, M. J. Ferguson, Coordination complexes of bismuth triflates with tetrahydrofuran and diphosphine ligands. Inorg. Chem. 2013, 52, 7242.10.1021/ic400875aSearch in Google Scholar PubMed

[19] K. Lyczko, M. Lyczko, K. Wozniak, M. Stachowicz, W. P. Oziminski, K. Kubo, Influence of pH and type of counterion on the formation of bismuth(III) complexes with tropolonato and 5-methyltropolonato ligands: Synthesis, structure, spectroscopic characterization and calculation studies. Inorganica Chimica Acta2015, 436, 57.10.1016/j.ica.2015.07.011Search in Google Scholar

[20] A. M. Johnson, M. C. Young, R. J. Hooley, Reversible multicomponent self-assembly mediated by bismuth ions. Dalton Trans. 2013, 42, 8394.10.1039/c3dt50578bSearch in Google Scholar PubMed

[21] L. Dostál, P. Novák, R. Jambor, A. Ruzicka, I. Cisarova, R. Jirasko, J. Holecek, Synthesis and structural study of organoantimony(III) and organobismuth(III) triflates and cations containing O,C,O-pincer type ligands. Organometallics2007, 26, 2911.10.1021/om070186bSearch in Google Scholar

[22] A. P. M. Robertson, N. Burford, R. McDonald, M. J. Ferguson, Coordination complexes of Ph3Sb2+ and Ph3Bi2+ : beyond pnictonium cations. Angew. Chem.2014, 126, 3548.10.1002/ange.201310613Search in Google Scholar

[23] A. Fridrichová, T. Svoboda, R. Jambor, Z. Padelkova, A. Ruzicka, M. Erben, R. Jirasko, L. Dostal, Synthesis and structural study on oranoantimony(III) and organobismuth(III) hydroxides containing an NCN pincer type ligand. Organometallics2009, 28, 5522.10.1021/om900607nSearch in Google Scholar

[24] A. Aprile, R. Corbo, K. V. Tan, D. J. D. Wilson, J. L. Dutton, The first bismuth-NHC complexes. Dalton Trans. 2014, 43, 764.10.1039/C3DT52715HSearch in Google Scholar

[25] P. Suresh, A. Sathyanarayana, G. Prabusankar, O. Hernandez, S. Golhen, The first monomeric β-diketiminate stabilized four-coordinated bismuth(III) bistrifluoromethansulfonate. Z. Anorg. Allg. Chem.2012, 3–4, 617.10.1002/zaac.201100463Search in Google Scholar

[26] J. Beckmann, J. Bolsinger, A. Duthie, P. Finke, E. Lork, C. Lüdtke, O. Mallow, S. Mebs, Mesityltellurenyl cations stabilized by triphenylpnictogens [MesTe(EPh3)]+ (E=P, As, Sb). Inorg. Chem.2012, 51, 12395.10.1021/ic3017722Search in Google Scholar PubMed

[27] J. W. Bats, M. Rueping, Experimental Crystal Structure Determination. CSD Communication 2015.Search in Google Scholar

[28] L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, M. Mehring, A novel water-soluble hexanuclear bismuth oxido cluster – synthesis, structure and complexation with polyacrylate. Eur. J. Inorg. Chem. 2010, 30, 4763.10.1002/ejic.201000753Search in Google Scholar

[29] D. L. Rogow, H. Fei, D. P. Brennan, M. Ikehata, P. Y. Zavalij, A. G. Oliver, S. R. J. Oliver, Hydrothermal synthesis of two cationic bismuthate clusters: An alkylenedisufonate bridged hexamer, [Bi6O4(OH)4(H2O)2][(CH2)2(SO3)2]3 and a rare nonamer templated by triflate, [Bi9O8(OH)6][CF3SO3]5. Inorg. Chem. 2010, 49, 5619.10.1021/ic1004402Search in Google Scholar PubMed

[30] P. C. Andrews, M. Busse, P. C. Junk, C. M. Forsyth, R. Peiris, Sulfonato-encapsulated bismuth(III) oxido-clusters from Bi2O3 in water under mild conditions. Chem. Commun.2012, 48, 7583.10.1039/c2cc33495jSearch in Google Scholar PubMed

[31] L. Miersch, M. Schlesinger, R. W. Troff, C. A. Schalley, T. Rüffler, H. Lang, D. Zahn, M. Mehring, Hydrolysis of a basic bismuth nitrate-formation and stability of novel bismuth oxido clusters. Chem. Eur. J. 2011, 17, 6985.10.1002/chem.201100673Search in Google Scholar PubMed

[32] L. Miersch, T. Rüffler, D. Schaarschmidt, H. Lang, R. W. Troff, C. A. Schalley, M. Mehring, Synthesis and characterization of polynuclear oxidobismuth sulfonates. Eur. J. Inorg. Chem. 2013, 9, 1427.10.1002/ejic.201201315Search in Google Scholar

[33] V. V. Sharutin, O. K. Sharutina, I. I. Pavlushkina, I. V. Egorova, A. P. Pakusina, D. B. Krivolapov, A. T. Gubaidullin, I. A. Litvinov, Reaction of Triphenylbismuth Bis(arenesulfonates) with Triphenylstibine. Zh. Obshch. Khim. 2001, 71, 87.10.1023/A:1012385524010Search in Google Scholar

[34] V. V. Sharutin, O. K. Sharutina, M. V. Zhitkevich, N. V. Nasonova, T. N. Bliznyuk, V. K. Bel’skii, Diphenylbismuth arenesulfonates. Synthesis and structure. Zh. Obshch. Khim. 2000, 70, 87.Search in Google Scholar

[35] F. Gschwind, M. Jansen, An unusual bismuth ethanedisulfonate network. Crystals2012, 2, 1374.10.3390/cryst2041374Search in Google Scholar

[36] S. Bauer, N. Stock, Schneller zum Ziel: Hochdurchsatz-Methoden in der Festkörperchemie. Chem. Unserer Zeit. 2007, 41, 390.10.1002/ciuz.200700404Search in Google Scholar

[37] N. Stock, High-throughput methods for discovery and optimization of porous crystalline materials. Chem. Ing. Tech. 2010, 82, 1039.10.1002/cite.201000029Search in Google Scholar

[38] N. Stock, High-throughput investigations employing solvothermal syntheses. Micropor. Mesopor. Mat. 2010, 129, 287.10.1016/j.micromeso.2009.06.007Search in Google Scholar

[39] G. M. Sheldrick, Crystal structure refinement with SHELX. Acta Cryst. 2015, 71, 3.10.1107/S2053229614024218Search in Google Scholar

[40] Stoe; Cie: XShape and XRed., Darmstadt, Germany 1998.Search in Google Scholar

[41] G. M. Sheldrick, SADABS. University of Göttingen, Germany 1996.Search in Google Scholar

[42] R. A. Coxall, S. G. Harris, S. Henderson, S. Parsons, R. A. Taskar, R. E. P. Winpenny, Inter-ligand reactions: in situ formation of new polydentate ligands. J. Chem. Soc. Dalton Trans. 2000, 14, 2349.10.1039/b001404oSearch in Google Scholar

[43] P. M. Forster, N. Stock, A. K. Cheetham, A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic-organic materials. Angew. Chem. Int. Ed. 2005, 44, 7608.10.1002/anie.200501766Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/zkri-2016-1980) offers supplementary material, available to authorized users.


Received: 2016-6-10
Accepted: 2016-11-20
Published Online: 2017-1-20
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Graphical Synopsis
  3. Editorial
  4. Synthesis and characterization of metastable transition metal oxides and oxide nitrides
  5. Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
  6. Thermal annealing of natural, radiation-damaged pyrochlore
  7. The formation of CdS quantum dots and Au nanoparticles
  8. Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
  9. Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
  10. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
  11. The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
  12. Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
  13. Structure and ion dynamics of mechanosynthesized oxides and fluorides
  14. Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
  15. Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
  16. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
  17. Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
  18. Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
  19. Type-I silicon clathrates containing lithium
  20. Experimental and theoretical investigation of the chromium–vanadium–antimony system
  21. Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
  22. Snapshots of calcium carbonate formation – a step by step analysis
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1980/html?lang=en
Scroll to top button