Startseite Synthesis and surfactant properties of sulfonate Gemini surfactants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and surfactant properties of sulfonate Gemini surfactants

  • Rong Yang

    Rong Yang is a sophomore in Shaanxi University of Science, majoring in materials and chemical engineering. The research direction is oilfield additives, including surfactant, crosslinking agent, gel breaker and so on. Undergraduate study in Xi ‘an Petroleum University, majoring in applied chemistry.

    , Xiaojuan Lai EMAIL logo , Lei Wang , Huaqiang Shi , Haibin Li , Jiali Chen , Xin Wen und Wenwen Yang
Veröffentlicht/Copyright: 23. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, a novel high salinity resistant, high temperature tolerant sulfonate Gemini surfactant (CK-3) for enhanced oil recovery was synthesized and is described. The critical micelle concentration (CMC) of CK-3 is 7.3 × 10−5 mol L−1 with a surface tension at CMC, γ CMC, of 30.88 mN m−1, and a pC20 value of 4.80. Moreover, increasing temperature led to delayed micellization, indicating the superior surface activity inherent in Gemini surfactants. When CK-3 was evaluated as an imbibing agent, an interfacial tension of 8.3 × 10−2 mN m−1 was observed between a 0.3 wt% CK-3 solution and crude oil, facilitated by hydrophobic group interactions which allow crude oil detachment. Finally, CK-3 molecules exhibited stable adsorption on rock walls, influencing wetting reversal. Zeta potential measurements exceeding 30 mV indicated stability. In aged capillary tubes, a 0.3 wt% CK-3 solution exhibited a rise height of 2.9 cm. Imbibition experiments on natural core samples showed a water imbibition efficiency of 8.73 %, compared to a significantly improved efficiency of 50.78 % with a 0.3 wt% CK-3 solution. This study also demonstrated the imbibition process and mechanisms of the CK-3, providing novel insights for the efficient development of unconventional oil reservoirs and the enhancement of crude oil recovery rates.


Corresponding author: Xiaojuan Lai, College of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi’an, Shaanxi, 710021, P.R. China; and Shaanxi Agricultural Products Processing Technology Research Institute, Xi’an 710021, P.R. China, E-mail:

Funding source: Industrialization Project of Shaanxi Provincial Education Department

Award Identifier / Grant number: 23JC008

Funding source: Key R&D Program of Shaanxi Province

Award Identifier / Grant number: 2024GX-YBXM-393

Funding source: Qin-Chuangyuan “Scientist and Engineer”

Award Identifier / Grant number: 2024QCY-KXJ-052

Funding source: Science and Technology Program of Xi’an, China

Award Identifier / Grant number: 22GXFW0014

About the author

Rong Yang

Rong Yang is a sophomore in Shaanxi University of Science, majoring in materials and chemical engineering. The research direction is oilfield additives, including surfactant, crosslinking agent, gel breaker and so on. Undergraduate study in Xi ‘an Petroleum University, majoring in applied chemistry.

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Research funding: This research was supported by the Qin-Chuangyuan “Scientist and Engineer” Team Construction Project (2024QCY-KXJ-052), Key R&D Program of Shaanxi Province (2024GX-YBXM-393), Industrialization Project of Shaanxi Provincial Education Department (23JC008), and Science and Technology Program of Xi’an, China (22GXFW0014). The funding agencies had no role in the study design, collection, analysis, interpretation of data, report writing, and the decision to submit the article for publication.

  6. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Shaban, S. M.; Taha, A. A.; Elged, A. H.; Taha, S. T.; Sabet, V. M.; Kim, D. H.; Moustafa, A. H. E. Insights on Gemini Cationic Surfactants Influence AgNPs Synthesis: Controlling Catalytic and Antimicrobial Activity. J. Mol. Liq. 2024, 397, 124071. https://doi.org/10.1016/j.molliq.2024.124071.Suche in Google Scholar

2. Lu, G.; Mu, M.; Shu, Q.; Zhang, Y. Quaternary Ammonium-Based and Imidazolium-Based Gemini Surfactants: A Comparison Study. Colloids Surf. A 2023, 683, 133023. https://doi.org/10.1016/j.colsurfa.2023.133023.Suche in Google Scholar

3. Wang, C. G.; Pan, Y.; Xu, Z. C.; Zhang, L.; Zhang, L.; Yang, S. C. Ultralow Interfacial Tension Achieved by Extended Anionic Surfactants with a Short Hydrophobic Chain. J. Mol. Liq. 2024, 400, 124514. https://doi.org/10.1016/j.molliq.2024.124514.Suche in Google Scholar

4. Yan, Z.; Wu, Y.; Zhao, M.; Yu, L.; Zhang, S. Study on Synthesis, Surface Activity and Quantum Chemical Properties of Anionic-Nonionic Gemini Surfactant. J. Mol. Liq. 2023, 392, 123439. https://doi.org/10.1016/j.molliq.2023.123439.Suche in Google Scholar

5. Devi, Y. G.; Adhikari, S.; Pulikkal, A. K.; Rajaraman, P. V. Impacts of Pyridinium Gemini Surfactants on Corrosion Inhibition of Carbon Steel. Surf. interfaces 2023, 45, 103796. https://doi.org/10.1016/j.surfin.2023.103796.Suche in Google Scholar

6. Li, L.; Niu, J.; Wang, J.; Song, L.; Wang, Q.; Sun, L.; He, M.; You, X. Effect of Gemini Surfactant on Wettability of Lignite: an Experimental and Molecular Dynamics Simulation Study. J. Mol. Liq. 2024, 399, 124394. https://doi.org/10.1016/j.molliq.2024.124394.Suche in Google Scholar

7. Yan, X.; Liu, Y.; Hou, Z.; Yuan, L.; Yang, J.; Dong, W. Cleaning Oil-Based Drilling Cuttings with Synthetic Gemini Surfactants. ACS Omega 2024, 9, 10488–10497. https://doi.org/10.1021/acsomega.3c08618.Suche in Google Scholar PubMed PubMed Central

8. Akbarabadi, M.; Alizadeh, A. H.; Piri, M.; Nagarajan, N. Experimental Evaluation of Enhanced Oil Recovery in Unconventional Reservoirs Using Cyclic Hydrocarbon Gas Injection. Fuel Fuel 2022, 331, 125676. https://doi.org/10.1016/j.fuel.2022.125676.Suche in Google Scholar

9. Zhao, J.; Jin, L.; Azzolina, N. A.; Wan, X.; Yu, X.; Sorensen, J. A.; Kurz, B. A.; Bosshart, N. W.; Smith, S. A.; Wu, C.; Vrtis, J. L.; Gorecki, C. D.; Ling, K. Investigating Enhanced Oil Recovery in Unconventional Reservoirs Based on Field Case Review, Laboratory, and Simulation Studies. Energy Fuels 2022, 36 (24), 14771–14788. https://doi.org/10.1021/acs.energyfuels.2c03056.Suche in Google Scholar

10. Li, J.; Tian, G.; Chen, X.; Xie, B.; Zhang, X.; Teng, J.; Zhao, Z.; Jin, H. An Optimal Model for Determination Shut-In Time Post-Hydraulic Fracturing of Shale Gas Wells: Model, Validation, and Application. Processes 2024, 12 (2), 399. https://doi.org/10.3390/pr12020399.Suche in Google Scholar

11. Zhang, J.; Wang, S.; Wang, X.; Huang, B.; Zuo, M.; Chen, H. The Influence Mechanism and the Contribution of Capillary Force and Gravity to Recovery in Spontaneous Imbibition in Low Permeability Reservoirs. J. Disper. Sci. Technol. 2023, 45 (4), 720–730. https://doi.org/10.1080/01932691.2023.2177670.Suche in Google Scholar

12. Jiang, W.; LV, W.; Jia, N.; Lu, X.; Wang, L.; Wang, K.; Mei, Y. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-In Process by Molecular Dynamics Simulations. Molecules 2024, 29 (5), 1112. https://doi.org/10.3390/molecules29051112.Suche in Google Scholar PubMed PubMed Central

13. Tian, F.; Zhao, Y.; Yan, Y.; Gou, X.; Shi, L.; Qin, F.; Shi, J.; Lv, J.; Cao, B.; Li, Y.; Lu, X. Analysis of the Static and Dynamic Imbibition Effect of Surfactants and the Relative Mechanism in Low-Permeability. ACS omega 2020, 5 (28), 17442–17449. https://doi.org/10.1021/acsomega.0c01888.Suche in Google Scholar PubMed PubMed Central

14. Sun, Y. P.; Xin, Y.; Lyu, F. T.; Dai, C. L. Experimental Study on the Mechanism of Adsorption-Improved Imbibition in Oil-Wet Tight Sandstone by a Nonionic Surfactant for Enhanced Oil Recovery. Pet. Sci. 2021, 18, 1115–1126. https://doi.org/10.1016/j.petsci.2021.07.005.Suche in Google Scholar

15. Chen, Y.; Fang, Y. X.; Cheng, W. Synthesis and Application of Sulfonate Gemini Surfactants Containing Fatty Alcohol Polyoxyethylene Ethers. China Washing Ind. 2023, 11, 5–11. https://doi.org/10.16054/j.cnki.cci.2023.11.010.Suche in Google Scholar

16. Zhao, M. W.; Dai, C. L.; Liu, P. Slickwater Characteristics and Efficient Imbibition Displacement Mechanism of Pressure-Driven Integrated Gemini Surfactant. Acta Pet. Sin. http://kns.cnki.net/kcms/detail/11.2128.Suche in Google Scholar

17. Bai, Y.; Pu, C.; Liu, S.; Liu, J. Carboxyl/alkyl Composite Silica-Based Amphiphilic Nanoparticles Enhanced Spontaneous Imbibition of Low Permeability Sandstone Rocks at Reservoir Conditions. Colloids Surf. A 2021, 629, 127504. https://doi.org/10.1016/j.colsurfa.2021.127504.Suche in Google Scholar

18. Daneh-Dezfuli, A.; Gholami-Malek-Abad, F.; Jalalvand, M. Application of Spectral Element Method in Simulation of Fractured Porous Media Domains Modeled by Fracture-Only Technique. Comput. Geosci. 2021, 155, 104838. https://doi.org/10.1016/j.cageo.2021.104838.Suche in Google Scholar

19. Hasanov, E. E.; Rahimov, R. A.; Abdullayev, Y.; Ahmadova, G. A. Symmetric and Dissymmetric pseudo‐Gemini Amphiphiles Based on Propoxylated Ethyl Piperazine and Fatty Acids. Chem. Select 2023, 8 (48), 03942. https://doi.org/10.1002/slct.202303942.Suche in Google Scholar

20. Du, Q.; Chen, S.; Liu, H.; Zhang, M.; Ren, S.; Luo, W. Sequential Modification of Montmorillonite by Al13 Polycation and Cationic Gemini Surfactant for the Removal of Orange II. Colloids Surf. A 2024, 687, 133489. https://doi.org/10.1016/j.colsurfa.2024.133489.Suche in Google Scholar

21. Guo, J. J.; Di, K. X.; Zhang, L. H.; Zhao, Y. L.; Tang, H. Y.; Zhang, R. H.; Tian, Y. Insights into In-Situ Imbibition Behavior of Fracturing Fluid in Propped Shale Fractures Based on Nuclear Magnetic Resonance: a Case Study from Longmaxi Formation Shale, Sichuan Basin, China. Pet. Sci. 2023, 21 (1), 410–429. https://doi.org/10.1016/j.petsci.2023.09.023.Suche in Google Scholar

22. Ahmadi, Y.; Ayari, M. A.; Olfati, M.; Hosseini, S. H.; Khandakar, A.; Vaferi, B.; Olazar, M. Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs. Polymers 2023, 15 (14), 3064. https://doi.org/10.3390/polym15143064.Suche in Google Scholar PubMed PubMed Central

23. Zhang, S.; Sheng, J. J. Effect of Water Imbibition on Hydration Induced Fracture and Permeability of Shale Cores. J. Nat. Gas. Sci. Eng. 2017, 45, 726–737. https://doi.org/10.1016/j.jngse.2017.06.008.Suche in Google Scholar

24. Cefarin, N.; Bedolla, D. E.; Surowka, A.; Donato, S.; Sepperer, T.; Tondi, D.; Sodini, N.; Birarda, G.; Vaccari, L. Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-computed Tomography. Int. J. Mol. Sci. 2021, 22 (23), 12869. https://doi.org/10.3390/ijms222312869.Suche in Google Scholar PubMed PubMed Central

25. Wu, L.; Lu, P.; Li, Y.; Sun, Y.; Wong, J.; Yang, K. First-principles Characterization of Two-Dimensional (CH3(CH2)3NH3)2(CH3NH3)n−1GenI3n+1 Perovskite. J. Mater. Chem. 2018, 6, 24389–24396. https://doi.org/10.1039/C8TA10055A.Suche in Google Scholar

26. Jin, J.; Xu, R.; Wu, X.; Fang, X.; Kong, W.; Zhang, K.; Cheng, J. Design and Synthesis of Sinomenine D-Ring Tetrazole-Isoxazole and Tetrazole-Triazole Derivatives via 1, 3-dipolar Cycloaddition Reaction. Tetrahedron 2023, 132, 133261. https://doi.org/10.1016/j.tet.2023.133261.Suche in Google Scholar

27. Bermúdez-Salguero, C.; Gracia-Fadrique, J. The Surface Chemical Potential from a Surface Equation of State versus Butler’s Equation. Fluid Phase Equilib. 2014, 375, 367–372. https://doi.org/10.1016/j.fluid.2014.04.030.Suche in Google Scholar

28. Bermúdez-Salguero, C.; Amigo, A.; Gracia-Fadrique, J. Activity Coefficients from Gibbs Adsorption Equation. Fluid Phase Equilib. 2012, 330, 17–23. https://doi.org/10.1016/j.fluid.2012.06.006.Suche in Google Scholar

29. Sonoda, J.; Sakai, T.; Inomata, Y. Liquid Oil that Flows in Spaces of Aqueous Foam without Defoaming. J. Phys. Chem. B 2014, 118 (31), 9438–9444. https://doi.org/10.1021/jp501599v.Suche in Google Scholar PubMed

30. Zabot, A. M.; Camargo, M. A.; Wolf, F. G.; Siebert, D. N.; Surmas, R.; dos Santos, L. O. E.; Ferreira, T. R.; Cássaro, F. A. M.; Pires, L. F. A Unified Algorithm for the Young–Laplace Method Applied to Porous Media. Braz. J. Phys. 2024, 54, 63. https://doi.org/10.1007/s13538-024-01442-w.Suche in Google Scholar

31. Jing, W.; Fu, S.; Zhang, L.; Li, A.; Ren, X.; Xu, C.; Gao, Z. Pore Scale Experimental and Numerical Study of Surfactant Flooding for Enhanced Oil Recovery. J. Petrol Sci. Eng. 2021, 196, 107999. https://doi.org/10.1016/j.petrol.2020.107999.Suche in Google Scholar

32. Yu, L.; Chen, G. Y.; Xu, H.; Liu, X. Substrate-Independent, Transparent Oil-Repellent Coatings with Self-Healing and Persistent Easy-Sliding Oil Repellency. ACS Nano 2016, 10 (1), 1076–1085. https://doi.org/10.1021/acsnano.5b06404.Suche in Google Scholar PubMed

33. Huang, C.; Zhang, J.; Lu, X.; Jihong, L.; Huang, Y.; Liu, L.; Su, Y.; Bai, J.; Li, W. Pore-scale Simulation of Water Flooding Using Volume of Fluid Method. Geofluids 2023, 6479378. https://doi.org/10.1155/2023/6479378.Suche in Google Scholar

Received: 2024-07-04
Accepted: 2024-09-23
Published Online: 2024-10-23
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tsd-2024-2611/html
Button zum nach oben scrollen