Home Cationic Gemini surfactants: a review on synthesis and their applications
Article
Licensed
Unlicensed Requires Authentication

Cationic Gemini surfactants: a review on synthesis and their applications

  • Bharti Naik

    Bharti Naik received her master’s degree in Oils, Oleochemicals and Surfactants Technology from Institute of Chemical Technology Mumbai in 2018. She is currently working as research scholar in Institute of Chemical Technology Mumbai.

    , Susmita S. Paranjpe

    Susmita S. Paranjpe received her master’s degree in Oils, Oleochemicals and Surfactants Technology from Institute of Chemical Technology Mumbai in 2024. She is currently working as scientist in Reliance Consumer Ltd.

    and Chandu S. Madankar

    Chandu S. Madankar got his Ph. D. from Indian Institute of Technology, Delhi, India in the field of Chemical Technology. He has published 30 research/review articles and attended several national and international conferences. He was the recipient of the Canadian Commonwealth Fellowship in University of Saskatchewan, Canada in 2011. Currently Dr. Madankar is working as Assistant Professor at the Oils, Oleochemicals and Surfactants Department.

    EMAIL logo
Published/Copyright: September 3, 2024
Become an author with De Gruyter Brill

Abstract

The molecules of Gemini surfactants are dimeric and consist of two monomeric surfactant units linked by a spacer. Among them, cationic Gemini surfactants have a wide range of application in various industrial sectors such as pharmaceuticals, home and personal care, corrosion inhibition, etc. Various methods of synthesis have been investigated and tested for the synthesis of cationic Gemini surfactants. The surface properties of Gemini surfactants are highly dependent on various factors like spacer, headgroups, counterions, etc. The cationic Gemini surfactants have lower CMC values as compared to their monomeric analogues. This review highlights the different methods for the synthesis of cationic Gemini surfactants and the applications of these surfactants in different fields are presented.


Corresponding author: Chandu S. Madankar, Department of Oils, Oleochemicals and Surfactants Technology, 80493 Institute of Chemical Technology , Mumbai, India, E-mail:

About the authors

Bharti Naik

Bharti Naik received her master’s degree in Oils, Oleochemicals and Surfactants Technology from Institute of Chemical Technology Mumbai in 2018. She is currently working as research scholar in Institute of Chemical Technology Mumbai.

Susmita S. Paranjpe

Susmita S. Paranjpe received her master’s degree in Oils, Oleochemicals and Surfactants Technology from Institute of Chemical Technology Mumbai in 2024. She is currently working as scientist in Reliance Consumer Ltd.

Chandu S. Madankar

Chandu S. Madankar got his Ph. D. from Indian Institute of Technology, Delhi, India in the field of Chemical Technology. He has published 30 research/review articles and attended several national and international conferences. He was the recipient of the Canadian Commonwealth Fellowship in University of Saskatchewan, Canada in 2011. Currently Dr. Madankar is working as Assistant Professor at the Oils, Oleochemicals and Surfactants Department.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Naik Bharti – Author has edited the paper, done all the revisions and corrections of the paper. Paranjpe Susmita – Author has written manuscript and helped in material preparation, and data collection. Chandu Madankar – Author has contributed to the study conception, design, review and corrections into the paper. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: Not applicable.

  6. Data availability: Not applicable.

References

1. Brycki, B.; Koziróg, A.; Kowalczyk, I.; Pospieszny, T.; Materna, P.; Marciniak, J. Synthesis, Structure, Surface and Antimicrobial Properties of New Oligomeric Quaternary Ammonium Salts with Aromatic Spacers. Molecules 2017, 22, 1810. https://doi.org/10.3390/molecules22111810.Search in Google Scholar PubMed PubMed Central

2. Zhang, S.; Yu, J.; Wu, J.; Tong, W.; Lei, Q.; Fang, W. Micellization Parameters of Six Gemini Quaternary Ammonium Surfactants From Measurements of Conductivity and Surface Tension. J. Chem. Eng. Data 2014, 59, 2891–2900. https://doi.org/10.1021/je500513b.Search in Google Scholar

3. Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A Review on Phospholipids and Their Main Applications in Drug Delivery Systems. Asian. J. Pharm. Sci. 2015, 10, 81–98. https://doi.org/10.1016/j.ajps.2014.09.004.Search in Google Scholar

4. Bunton, C. A.; Robinson, L.; Stam, M. F.; Schaak, J. Catalysis of Nucleophilic Substitutions by Micelles of Dicationic Detergents. J. Organic. Chem. 1971, 36 (16), 2346–2350. https://doi.org/10.1021/jo00815a033.Search in Google Scholar

5. Monger, F. M.; Littau, C. A. Gemini Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113 (4), 1451–1452. https://doi.org/10.1021/ja00004a077.Search in Google Scholar

6. Sharma, R.; Kamal, A.; Abdinejad, M.; Mahajan, R. K.; Kraatz, H. B. Advances in the Synthesis, Molecular Architectures and Potential Applications of Gemini Surfactants. Adv. Colloid Interface Sci. 2017, 248, 35–68. https://doi.org/10.1016/j.cis.2017.07.032.Search in Google Scholar PubMed

7. Kwas̈niewska, D.; Staszak, K.; Wieczorek, D.; Zieliński, R. Synthesis and Interfacial Activity of Novel Heterogemini Sulfobetaines in Aqueous Solution. J. Surfactants Deterg. 2015, 18 (3), 477–486. https://doi.org/10.1007/s11743-014-1663-5.Search in Google Scholar PubMed PubMed Central

8. Kateb, M. E.; Givenchy, E. T. D.; Baklouti, A.; Guittard, F. Synthesis and Surface Properties of Semi-Fluorinated Gemini Surfactants with Two Reactive Bromo Pendant Groups. J. Colloid Interface Sci. 2011, 357 (1), 129–134. https://doi.org/10.1016/j.jcis.2011.02.003.Search in Google Scholar PubMed

9. Jia, W.; Rao, X.; Song, Z.; Shang, S. Microwave-assisted Synthesis and Properties of a Novel Cationic Gemini Surfactant with the Hydrophenanthrene Structure. J. Surfactants Deterg. 2009, 2 (3), 261–267. https://doi.org/10.1007/s11743-009-1120-z.Search in Google Scholar

10. Zana, R. Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution. J. Colloid Interface Sci. 2002, 248 (2), 203–220. https://doi.org/10.1006/jcis.2001.8104.Search in Google Scholar PubMed

11. Sikirić, M.; Primožič, I.; Talmon, Y.; Filipović-Vinceković, N. Effect of the Spacer Length on the Association and Adsorption Behavior of Dissymmetric Gemini Surfactants. J. Colloid Interface Sci. 2005, 281 (2), 473–481. https://doi.org/10.1016/j.jcis.2004.08.14012.Search in Google Scholar

12. Diamant, H.; Andelman, D. Dimeric Surfactants: Spacer Chain Conformation and Specific Area at the AirNater Interface. Langmuir 1994, 10, 2910–2916. https://doi.org/10.1021/la00021a01213.Search in Google Scholar

13. Rosen, M. J.; Song, L. D. Dynamic Surface Tension of Aqueous Surfactant Solutions. 8. Effect of Spacer on Dynamic Properties of Gemini Surfactant Solutions. J. Colloid Interface Sci. 1996, 179, 261–268. https://doi.org/10.1006/jcis.1996.0212.Search in Google Scholar

14. Binks, B. F. Modern Characterization Methods of Surfactant Systems; CRC Press: New York, 1999. ISBN 0824719786.Search in Google Scholar

15. Mondal, M. H.; Roy, A.; Malik, S.; Ghosh, A.; Saha, B. Review on Chemically Bonded Geminis with Cationic Heads: Second-Generation Interfactants. Resear. Chem. Intermed. 2016, 42, 1913–1928; https://doi.org/10.1007/s11164-015-2125-z.Search in Google Scholar

16. Maneedaeng, A.; Phoemboon, S.; Chanthasena, P.; Chudapongse, N. Synthesis, Interfacial Properties, and Antimicrobial Activity of a New Cationic Gemini Surfactant. Korean J. Chem. Eng. 2018, 35 (11), 2313–2320. https://doi.org/10.1007/s11814-018-0133-617.Search in Google Scholar

17. Song, B.; Zhao, J.; Wang, B.; Jiang, R. Synthesis and Self-Assembly of New Light-Sensitive Gemini Surfactants Containing an Azobenzene Group. Colloids Surf., A 2009, 352, 24–30. https://doi.org/10.1016/j.colsurfa.2009.09.044.Search in Google Scholar

18. Gawali, I. T.; Usmani, G. A. Synthesis, Surface Active Properties and Applications of Cationic Gemini Surfactants From Triethylenetetramine. J. Dispers. Sci. Technol. 2020, 41 (3), 450–460. https://doi.org/10.1080/01932691.2019.158411219.Search in Google Scholar

19. Liang, Y.; Li, H.; Li, M.; Mao, X.; Li, Y.; Wang, Z.; Xue, L.; Chen, X.; Hao, X. Synthesis and Physicochemical Properties of Ester-Bonded Gemini Pyrrolidinium Surfactants and a Comparison With Single-Tailed Amphiphiles. J. Mol. Liq. 2019, 280, 319–326. https://doi.org/10.1016/j.molliq.2019.02.01820.Search in Google Scholar

20. Benavides, T.; Mitjans, M.; Martínez, V.; Clapés, P.; Infante, M. R.; Clothier, R. H.; Vinardell, M. Assessment of Primary Eye and Skin Irritants by In Vitro Cytotoxicity and Phototoxicity Models: An In Vitro Approach of New Arginine-Based Surfactant-Induced Irritation. Toxicology 2004, 197 (3), 229–237. https://doi.org/10.1016/j.tox.2004.01.01121.Search in Google Scholar

21. Martínez, V.; Sánchez, L.; Busquets, M. A.; Infante, M. R.; Pilar Vinardell, M.; Mitjans, M. Disturbance of Erythrocyte Lipid Bilayer by Amino Acid-Based Surfactants. Amino Acids 2007, 33 (3), 459–462; https://doi.org/10.1007/s00726-006-0447-222.Search in Google Scholar

22. Pérez, L.; Pinazo, A.; Vinardell, P.; Clapés, P.; Angelet, M.; Infante, M. R. Synthesis and Biological Properties of Dicationic Arginine-Diglycerides. New J. Chem. 2002, 26 (9), 1221–1227; https://doi.org/10.1007/s00726-006-0447-223.Search in Google Scholar

23. Pérez, N.; Pérez, L.; Infante, M. R.; García, M. T. Biological Properties of Arginine-Based Glycerolipidic Cationic Surfactants. Green Chem. 2005, 7 (7), 540–546. https://doi.org/10.1039/B419204D24.Search in Google Scholar

24. Husson, E.; Humeau, C.; Paris, C.; Vanderesse, R.; Framboisier, X.; Marc, I.; Chevalot, I. Enzymatic Acylation of Polar Dipeptides: Influence of Reaction Media and Molecular Environment of Functional Groups. Proc. Biochem. 2009, 44 (4), 428–434. https://doi.org/10.1016/j.procbio.2008.12.01125.Search in Google Scholar

25. Pérez, L.; Pinazo, A.; Teresa García, M.; Lozano, M.; Manresa, A.; Angelet, M.; Pilar Vinardell, M.; Mitjans, M.; Pons, R.; Rosa Infante, M. Cationic Surfactants From Lysine: Synthesis, Micellization and Biological Evaluation. Eur. J. Med. Chem. 2009, 44 (5), 1884–1892. https://doi.org/10.1016/j.ejmech.2008.11.003.Search in Google Scholar PubMed

26. Angayarkanny, S.; Vijay, R.; Baskar, G.; Mandal, A. B. Self-organization at the Interface and in Aqueous Solution of a Cationic Gemini Surfactant from the Dioctyl Ester of Cystine. J. Colloid Interface Sci. 2012, 367 (1), 319–326. https://doi.org/10.1016/j.jcis.2011.10.04327.Search in Google Scholar

27. Vives, M. A.; Macián, M.; Seguer, J.; Infante, M. R.; Vinardell, M. P. Hemolytic Action of Anionic Surfactants of the Diacyl Lysine Type. Comp. Biochem. Physiol., C: Comp. Pharmacol. 1997, 118 (1), 71–74. https://doi.org/10.1016/S0742-8413(97)00033-928.Search in Google Scholar

28. Yoshimura, T.; Sakato, A.; Tsuchiya, K.; Ohkubo, T.; Sakai, H.; Abe, M.; Esumi, K. Adsorption and Aggregation Properties of Amino Acid-Based N-Alkyl Cysteine Monomeric and N,N′-dialkyl Cystine Gemini Surfactants. J. Colloid Interface Sci. 2007, 308 (2), 466–473. https://doi.org/10.1016/j.jcis.2006.11.038.Search in Google Scholar PubMed

29. Stjerndahl, M.; Holmberg, K. Synthesis and Chemical Hydrolysis of Surface-Active Esters. J. Surfactants. Deterg. 2003, 6, 319–324. https://doi.org/10.1007/s11743-003-0275-0.Search in Google Scholar

30. Stjerndahl, M.; van Ginkel, C. G.; Holmberg, K. Hydrolysis and Biodegradation Studies of Surface-Active Esters. J. Surfactants Deterg. 2003, 6 (4), 319–324. https://doi.org/10.1007/s11743-003-0276-z31.Search in Google Scholar

31. Tehrani-Bagha, A. R.; Oskarsson, H.; van Ginkel, C. G.; Holmberg, K. Cationic Ester-Containing Gemini Surfactants: Chemical Hydrolysis and Biodegradation. J. Colloid Interface Sci. 2007, 312 (2), 444–452. https://doi.org/10.1016/j.jcis.2007.03.04432.Search in Google Scholar

32. Gao, Z.; Tai, S.; Zhang, Q.; Zhao, Y.; Lü, B.; Ge, Y.; Huang, L.; Tang, X. Synthesis and Surface Activity of Biquaternary Ammonium Salt Gemini Surfactants With Ester Bond. J. Nat. Sci. 2008, 13 (2), 227–231. https://doi.org/10.1007/s11859-008-0219-9.Search in Google Scholar

33. Panda, M.; Fatma, N.; Kamil, M. Synthesis, Characterization and Solution Properties of Novel Cationic Ester-Based Gemini Surfactants. Z. Phys. Chem. 2019, 233 (5), 707–720. https://doi.org/10.1515/zpch-2017-1000.Search in Google Scholar

34. Akram, M.; Lal, H.; Osama, M.; Ansari, F.; Anwar, S.; Kabir-ud-Din. An Insight View on Synthetic Protocol, Surface Activity, and Biological Aspects of Novel Biocompatible Quaternary Ammonium Cationic Gemini Surfactants. J. Surfactants Deterg. 2021, 24 (1), 35–49. https://doi.org/10.1002/jsde.12450.Search in Google Scholar

35. Tehrani-Bagha, A. R.; Holmberg, K.; van Ginkel, C. G.; Kean, M. Cationic Gemini Surfactants With Cleavable Spacer: Chemical Hydrolysis, Biodegradation, and Toxicity. J. Colloid Interface Sci. 2015, 449, 72–79. https://doi.org/10.1016/j.jcis.2014.09.072.Search in Google Scholar PubMed

36. Liu, D.; Yang, X.; Liu, P.; Mao, T.; Shang, X.; Wang, L. Synthesis and Characterization of Gemini Ester Surfactant and its Application in Efficient Fabric Softening. J. Mol. Liq. 2020, 299, 112236. https://doi.org/10.1016/j.molliq.2019.112236.Search in Google Scholar

37. Zhang, Q.; Gao, Z.; Xu, F.; Tai, S.; Liu, X.; Mo, S.; Niu, F. Surface Tension and Aggregation Properties of Novel Cationic Gemini Surfactants with Diethylammonium Headgroups and a Diamido Spacer. Langmuir 2012, 28 (33), 11979–11987. https://doi.org/10.1021/la3011212.Search in Google Scholar PubMed

38. Menger, F. M.; Keiper, J. S.; Azov, V. Gemini Surfactants with Acetylenic Spacers. Langmuir 2000, 16 (5), 2062–2067. https://doi.org/10.1021/la9910576.Search in Google Scholar

39. Ahmad, H. M.; Murtaza, M.; Kamal, M. S.; Hussain, S. M. S.; Mahmoud, M. Cationic Gemini Surfactants Containing Biphenyl Spacer as Shale Swelling Inhibitor. J. Mol. Liq. 2021, 325, 115164. https://doi.org/10.1016/j.molliq.2020.115164.Search in Google Scholar

40. Pisárčik, M.; Jampílek, J.; Devínsky, F.; Drábiková, J.; Tkacz, J.; Opravil, T. Gemini Surfactants with Polymethylene Spacer: Supramolecular Structures at Solid Surface and Aggregation in Aqueous Solution. J. Surfactants Deterg. 2016, 19 (3), 477–486; https://doi.org/10.1007/s11743-016-1797-8. https://doi/full/10.1007/s11743-016-1797-8.Search in Google Scholar

41. Borse, M.; Sharma, V.; Aswal, V. K.; Pokhriyal, N. K.; Joshi, J. V.; Goyal, P. S.; Devi, S. Small Angle Neutron Scattering and Viscosity Studies of Micellar Solutions of Bis-Cationic Surfactants Containing Hydroxyethyl Methyl Quaternary Ammonium Head Groups. Phys. Chem. Chem. Phys. 2004, 6 (13), 3508–3514. https://doi.org/10.1039/B402767C.Search in Google Scholar

42. Zhang, Q.; Gao, Z.; Xu, F.; Tai, S. Effect of Hydrocarbon Structure of the Headgroup on the Thermodynamic Properties of Micellization of Cationic Gemini Surfactants: an Electrical Conductivity Study. J. Colloid Interface Sci. 2012, 371 (1), 73–81. https://doi.org/10.1016/j.jcis.2011.12.076.Search in Google Scholar PubMed

43. Garcia, M. T.; Kaczerewska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Hydrophilicity and Flexibility of the Spacer as Critical Parameters on the Aggregation Behavior of Long Alkyl Chain Cationic Gemini Surfactants in Aqueous Solution. J. Mol. Liq. 2017, 230, 453–460. https://doi.org/10.1016/j.molliq.2017.01.053.Search in Google Scholar

44. Atzrodt, J.; Derdau, V.; Kerr, W.; Reid, M. Applications of Hydrogen Isotopes in the Life Sciences. Angew. Chem. 2017, 1–26. https://doi.org/10.1002/anie.201704146.Search in Google Scholar PubMed

45. Wang, X.; Wang, J.; Wang, Y.; Yan, H.; Li, P.; Thomas, R. K. Effect of the Nature of the Spacer on the Aggregation Properties of Gemini Surfactants in an Aqueous Solution. Langmuir 2004, 20 (1), 53–56. https://doi.org/10.1021/la0351008.Search in Google Scholar PubMed

46. Zana, R.; In, M.; Lévy, H.; Duportail, G. Alkanediyl-α,ω-bis(dimethylalkylammonium Bromide). 7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity. Langmuir 1997, 13 (21), 5552–5557. https://doi.org/10.1021/la970369a.Search in Google Scholar

47. Zana, R. Alkanediyl-α,ω-bis(dimethylalkylammonium Bromide) Surfactants: Behavior in Aqueous Solution at Concentrations below the Critical Micellization Concentration: An Electrical Conductivity Study. J. Colloid Interface Sci. 2002, 246 (1), 182–190. https://doi.org/10.1006/jcis.2001.7921.Search in Google Scholar PubMed

48. Rosen, M. J.JTK Surfactants and Interfacial Phenomena, 4th ed.; John Wiley & Sons: Hoboken, New Jersey, 2012; pp. 33–34.Search in Google Scholar

49. Hummel, D. Handbook of Surfactant Analysis: Chemical, Physico-Chemical and Physical Methods, 2000. https://lccn.loc.gov/99044862.Search in Google Scholar

50. Hajy, A. M.; Javadian, S.; Gharibi, H.; Tehrani-Bagha, A. R.; Alavijeh, M. R.; Kakaei, K. Aggregation Behavior and Intermicellar Interactions of Cationic Gemini Surfactants: Effects of Alkyl Chain, Spacer Lengths and Temperature. J. Chem. Thermodyn. 2012, 44 (1), 107–115. https://doi.org/10.1016/j.jct.2011.08.007.Search in Google Scholar

51. Singh, V.; Tyagi, R. Unique Micellization and CMC Aspects of Gemini Surfactant: An Overview. J. Disper. Sci. Technol. 2014, 35 (12), 1774–1792. https://doi.org/101080/019326912013856317.10.1080/01932691.2013.856317Search in Google Scholar

52. Zana, R. Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution. J. Colloid Interface Sci. 2002, 248, 203–220. https://doi.org/10.1006/jcis.2001.8104.Search in Google Scholar PubMed

53. Zana, R. Bolaform and Dimeric (Gemini) Surfactants. Special. Surfactants 1997, 81–103. https://doi.org/10.1007/978-94-009-1557-2_4.Search in Google Scholar

54. In, M.; Bec, V.; Aguerre-Chariol, O.; Zana, R. Quaternary Ammonium Bromide Surfactant Oligomers in Aqueous Solution: Self-Association and Microstructure. Langmuir 1999, 16 (1), 141–148. https://doi.org/10.1021/la990645g.Search in Google Scholar

55. Bhattarai, A.; Abdul Rub, M.; Posa, M.; Saha, B.; Kumar, D. Catalytic Impacts of Cationic Twin Headed and Tailed Gemini Surfactants toward Study of glycine and Ninhydrin in Sodium Acetate-Acetic Acid Buffer System. J. Mol. Liq. 2022, 360, 119442. https://doi.org/10.1016/j.molliq.2022.119442.Search in Google Scholar

56. De, S.; Aswal, V. K.; Goyal, P. S.; Bhattacharya, S. Role of Spacer Chain Length in Dimeric Micellar Organization. Small Angle Neutron Scattering and Fluorescence Studies. J. Phys. Chem. 1996, 100 (28), 11664–11671. https://doi.org/10.1021/jp9535598.Search in Google Scholar

57. Aswal, V. K.; De, S.; Goyal, P. S.; Bhattacharya, S.; Heenan, R. K. Small-angle Neutron Scattering Study of Micellar Structures of Dimeric Surfactants. Phys. Rev. E. 1998, 57 (1), 776. https://doi.org/10.1103/PhysRevE.57.776.Search in Google Scholar

58. Hattori, N.; Hirata, H.; Okabayashi, H.; Furusaka, M.; O’Connor, C. J.; Zana, R. Small-angle Neutron-Scattering Study of Bis(quaternaryammonium Bromide) Surfactant Micelles in Water. Effect of the Long Spacer Chain on Micellar Structure. Colloid Polym. Sci. 1999, 277 (1), 95–100. https://doi.org/10.1007/s003960050373.Search in Google Scholar

59. Hattori, N.; Hirata, H.; Okabayashi, H.; O’Connor, C. J. Small-angle Neutron-Scattering Study and Micellar Model of the Gemini (Phenylene-dimethylene) Bis(n-Octylammonium)dibromide Surfactant Micelles in Water. Colloid Polym. Sci. 1999, 277 (4), 361–371. https://doi.org/10.1007/s003960050393.Search in Google Scholar

60. Zana, R.; Benrraou, M.; Rueff, R. Alkanediyl-α,ω-bis(dimethylalkylammonium Bromide) Surfactants. 1. Effect of the Spacer Chain Length on the Critical Micelle Concentration and Micelle Ionization Degree. Langmuir 1991, 7 (6), 1072–1075. https://doi.org/10.1021/la00054a008.Search in Google Scholar

61. Hoque, J.; Akkapeddi, P.; Yarlagadda, V.; Uppu, DSSM; Kumar, P.; Haldar, J. Cleavable Cationic Antibacterial Amphiphiles: Synthesis, Mechanism of Action, and Cytotoxicities. Langmuir 2012, 28 (33), 12225–12234. https://doi.org/10.1021/la302303d.Search in Google Scholar PubMed

62. Chauhan, V.; Singh, S.; Kaur, T.; Kaur, G. Self-assembly and Biophysical Properties of Gemini 3-alkyloxypyridinium Amphiphiles with a Hydroxyl-Substituted Spacer. Langmuir 2015, 31 (10), 2956–2966. https://doi.org/10.1021/la5045267.Search in Google Scholar PubMed

63. Tawfik, S. M. Ionic Liquids Based Gemini Cationic Surfactants as Corrosion Inhibitors for Carbon Steel in Hydrochloric Acid Solution. J. Mol. Liq. 2016, 216, 624–635. https://doi.org/10.1016/j.molliq.2016.01.066.Search in Google Scholar

64. Wang, W.; Han, Y.; Tian, M.; Fan, Y.; Tang, Y.; Wang, Y. Gao MCationic Gemini surfactant-assisted synthesis of hollow au nanostructures by stepwise reductions. ACS Appl. Mater. Interfaces 2013, 5 (12), 5709–5716. https://doi.org/10.1021/am4011226.Search in Google Scholar PubMed

65. Kim, B. K.; Doh, K. O.; Bae, Y. U.; Seu, Y. B. Synthesis and Optimization of Cholesterol-Based Diquaternary Ammonium Gemini Surfactant (Chol-GS) as a New Gene Delivery Vector. J. Microbiol. Biotechnol. 2011, 21 (1), 93–99. https://doi.org/10.4014/jmb.1008.08012.Search in Google Scholar PubMed

66. Fatma, N.; Panda, M.; Kabir-ud-Din, B. M. Ester-bonded Cationic Gemini Surfactants: Assessment of Their Cytotoxicity and Antimicrobial Activity. J. Mol. Liq. 2016, 222, 390–394. https://doi.org/10.1016/j.molliq.2016.07.044.Search in Google Scholar

67. Sanan, R.; Kaur, R.; Mahajan, R. K. Micellar Transitions in Catanionic Ionic Liquid-Ibuprofen Aqueous Mixtures; Effects of Composition and Dilution. RSC Adv. 2014, 4 (110), 64877–64889. https://doi.org/10.1039/C4RA10840J.Search in Google Scholar

68. Mahajan, R. K.; Mahajan, S.; Bhadani, A.; Singh, S. Physicochemical Studies of Pyridinium Gemini Surfactants with Promethazine Hydrochloride in Aqueous Solution. Phys. Chem. Chem. Phys. 2012, 14 (2), 887–898. https://doi.org/10.1039/C1CP22448D.Search in Google Scholar

69. Rajput, S. M.; Mondal, K.; Kuddushi, M.; Jain, M.; Ray, D.; Aswal, V. K.; Malek, N. I. Formation of Hydrotropic Drug/gemini Surfactant Based Catanionic Vesicles as Efficient Nano Drug Delivery Vehicles. Colloid Interface Sci. Commun. 2020, 37, 100273. https://doi.org/10.1016/j.colcom.2020.100273.Search in Google Scholar

70. Rajput, S. M.; Kumar, S.; Aswal, V. K.; El Seoud, O. A.; Malek, N. I.; Kailasa, S. K. Drug-Induced Micelle-To-Vesicle Transition of a Cationic Gemini Surfactant: Potential Applications in Drug Delivery. Chem. Phys. Chem. 2018, 19 (7), 865–872. https://doi.org/10.1002/cphc.201701134.Search in Google Scholar PubMed

71. Akram, M.; Osama, M.; Lal, H.; Salim, M.; Hashmi, M. A.; Din, K. U. Biophysical Investigation of the Interaction between NSAID Ibuprofen and Cationic Biodegradable Cm-E2o2-Cm Gemini Surfactants. J. Mol. Liq. 2023, 370. https://doi.org/10.1016/j.molliq.2022.120972.Search in Google Scholar

72. Damen, M.; Groenen, A. J. J.; Van Dongen, S. F. M.; Nolte, R. J. M.; Scholte, B. J.; Feiters, M. C. Transfection by Cationic Gemini Lipids and Surfactants. Med. Chem. Commun. 2018, 9, 1404–1425. https://doi.org/10.1039/C8MD00249E.Search in Google Scholar PubMed PubMed Central

73. Fisicaro, E.; Compari, C.; Bacciottini, F.; Contardi, L.; Barbero, N.; Viscardi, G.; Quagliotto, P.; Donofrio, G.; Różycka-Roszak, B.; Misiak, P.; Woźniak, E.; Sansone, F. Nonviral Gene Delivery: Gemini Bispyridinium Surfactant-Based Dna Nanoparticles. J. Phys. Chem. B. 2014, 118 (46), 13183–13191. https://doi.org/10.1021/jp507999g.Search in Google Scholar PubMed

74. Fu, S. Q.; Guo, J. W.; Zhong, X.; Yang, Z.; Lai, X. F. Synthesis, Physiochemical Property and Antibacterial Activity of Gemini Quaternary Ammonium Salts with a Rigid Spacer. RSC Adv. 2016, 6 (20), 16507–16515. https://doi.org/10.1039/C5RA22368G.Search in Google Scholar

75. Setiawan, E.; Mudasir, W. K. Application of Quantitative Structure-Property Relationship (QSPR) Models for the Predictions of Critical Micelle Concentration of Gemini Imidazolium Surfactants. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing: Bandung, Indonesia, 2020.10.1088/1757-899X/742/1/012022Search in Google Scholar

76. Wani, F. A.; Behera, K.; Padder, R. A.; Husain, M.; Malik, M. A.; Al-Thabaiti, N. S.; Ahmad, R.; Patel, R. Micellization, Anti-proliferative Activity and Binding Study of Cationic Gemini Surfactants with Calf Thymus DNA. Colloids Interface Sci. Commun. 2020, 34. https://doi.org/10.1016/j.colcom.2019.100221.Search in Google Scholar

77. Bhadani, A.; Singh, S. Novel Gemini Pyridinium Surfactants: Synthesis and Study of Their Surface Activity, DNA Binding, and Cytotoxicity. Langmuir 2009, 25 (19), 11703–11712. https://doi.org/10.1021/la901641f.Search in Google Scholar PubMed

78. Calejo, M. T.; Cardoso, A. M. S.; Marques, E. F.; Araújo, M. J.; Kjøniksen, A. L.; Sande, S. A.; Pedroso de Lima, M. C.; Jurado, A. S.; Nyström, B. In Vitro Cytotoxicity of a Thermoresponsive Gel System Combining Ethyl(hydroxyethyl) Cellulose and Lysine-Based Surfactants. Colloids Surf., B 2013, 102, 682–686. https://doi.org/10.1016/j.colsurfb.2012.09.033.Search in Google Scholar PubMed

79. Kaczerewska, O.; Leiva-Garcia, R.; Akid, R.; Brycki, B.; Kowalczyk, I.; Pospieszny, T. Effectiveness of O-Bridged Cationic Gemini Surfactants as Corrosion Inhibitors for Stainless Steel in 3 M HCl: Experimental and Theoretical Studies. J. Mol. Liq. 2018, 249, 1113–1124. https://doi.org/10.1016/j.molliq.2017.11.142.Search in Google Scholar

80. Deyab, M. A.; Mohsen, Q. Inhibitory Influence of Cationic Gemini Surfactant on the Dissolution Rate of N80 Carbon Steel in 15% HCl Solution. Sci. Rep. 2021, 11 (1). https://doi.org/10.1038/s41598-021-90031-x.Search in Google Scholar PubMed PubMed Central

81. Thirupathi, P.; Venkatraman, B. R. Corrosion Inhibition Behaviour on Carbon Steel in Well-Water by Ethanolic Extract of Portulaca Quadrifida (Chicken Weed) Leaves. Indian J. Sci. Technol. 2021, 14 (18), 1488–1504. https://doi.org/10.17485/IJST/v14i18.630.Search in Google Scholar

82. Wang, S.; Xin, X.; Zhang, H.; Shen, J.; Zheng, Y.; Song, Z.; Yang, Y. Stable Monodisperse Colloidal Spherical Gold Nanoparticles Formed by an Imidazolium Gemini Surfactant-Based Water-In-Oil Microemulsion with Excellent Catalytic Performance. RSC Adv. 2016, 6 (34), 28156–28164. https://doi.org/10.1039/C6RA02450E.Search in Google Scholar

83. Hejazifar, M.; Earle, M.; Seddon, K. R.; Weber, S.; Zirbs, R.; Bica, K. Ionic Liquid-Based Microemulsions in Catalysis. J. Org. Chem. 2016, 81 (24), 12332–12339. https://doi.org/10.1021/acs.joc.6b02165.Search in Google Scholar PubMed PubMed Central

84. Lin, L.; Li, X.; Zhou, J.; Zou, J.; Lai, J.; Chen, Z.; Shen, J.; Xu, H. Plasma-aided Green and Controllable Synthesis of Silver Nanoparticles and Their Compounding With Gemini Surfactant. J. Taiwan Inst. Chem. Eng. 2021, 122, 311–319. https://doi.org/10.1016/j.jtice.2021.04.061.Search in Google Scholar

85. Li, D.; Fang, W.; Feng, Y.; Geng, Q.; Song, M. Stability Properties of Water-Based Gold and Silver Nanofluids Stabilized by Cationic Gemini Surfactants. J. Taiwan Inst. Chem. Eng. 2019, 97, 458–465. https://doi.org/10.1016/j.jtice.2019.02.017.Search in Google Scholar

86. Bhattarai, A.; Rub, M. A.; Posa, M.; Saha, B.; Asiri, A. M.; Kumar, D. Studies of Ninhydrin and Phenylalanine in Cationic Dimeric Gemini Micellar System: Spectrophotometric and Conductometric Measurements. Colloids Surf., A 2022, 20, 655. https://doi.org/10.1016/j.colsurfa.2022.130334.Search in Google Scholar

87. Liu, Q.; Liu, S.; Luo, D.; Peng, B. Ultra-Low Interfacial Tension Foam System for Enhanced Oil Recovery. Appl. Sci. 2019, 9, 2155. https://doi.org/10.3390/app9102155.Search in Google Scholar

88. Shang, X.; Bai, Y.; Sun, J.; Dong, C. Performance and Displacement Mechanism of a Surfactant/Compound Alkaline Flooding System for Enhanced Oil Recovery. Colloids Surf., A 2019, 580, 123679. https://doi.org/10.1016/j.colsurfa.2019.123679.Search in Google Scholar

89. Rana, A.; Arfaj, M.; Yami, A.; Saleh, T. Cetyltrimethylammonium Modified Graphene as a Clean Swelling Inhibitor in Water-Based Oil-Well Drilling Mud. J. Environ. Chem. Eng. 2020, 8, 103802. https://doi.org/10.1016/j.jece.2020.103802.Search in Google Scholar

90. Rashidy, A.; Hosseinzadeh, P.; Solouk, A.; Akbari, S.; Szulc, A.; Brycki, B. Cationic Gemini Surfactant Properties, its Potential as a Promising Bioapplication Candidate, and Strategies for Improving its Biocompatibility: A Review. Adv. Colloid interface sci. 2022, 299, 102581. https://doi.org/10.1016/j.cis.2021.102581.Search in Google Scholar PubMed

91. Perez, L.; Perez, L.; Hafidi, Z.; Pinazo, A.; García Zein, M. Nanoparticles Containing ArgininePhenylalanine-Based Surfactants: Stability, Antimicrobial and Hemolytic Activity. Nanomaterials 2023, 13, 200. https://doi.org/10.3390/nano13010200.Search in Google Scholar PubMed PubMed Central

Received: 2024-02-13
Accepted: 2024-06-12
Published Online: 2024-09-03
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2024-2585/html
Scroll to top button