Startseite Performance Evaluation of the Percarbonate and Perborate Bleach Activators Synthesized by a Low-Cost, Two-Step Method from Phenol
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Performance Evaluation of the Percarbonate and Perborate Bleach Activators Synthesized by a Low-Cost, Two-Step Method from Phenol

  • Omid Shojaei

    Omid Shojaei has obtained his MS in Applied Chemistry from the University of Tehran in 2007, and his thesis topic was surfactant production and application in detergents. After his graduation, he started working as a researcher in the research Group of Chemical Processes design, ACECR, for the University of Tehran. He became the permanent employee of ACECR in 2015 and now is the director of the commercialization office for chemical products at ACECER. His research interest is surfactant production and application as well as chemical scale inhibition.

    EMAIL logo
Veröffentlicht/Copyright: 25. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bleach activators decrease the energy consumption and fabrics damage in the process of laundry and industrial cotton bleaching. Herein, we demonstrate a low-cost, two-step method for the synthesis of sodium nonanoyloxybenzene sulfonate and sodium lauroyloxybenzene sulfonate from phenol as a simple precursor material for efficient bleach activators. Initially, phenol was sulfonated to sodium p-phenolsulfonate. In the second step, it was acylated with nonanoyl chloride and dodecanoyl chloride to synthesize sodium nonanoyloxybenzene sulfonate and sodium lauroyloxybenzene sulfonate, respectively. Sodium p-phenolsulfonate and the obtained bleach activators were characterized by thermogravimetric analysis, IR-, and 1H NMR spectroscopy. The investigation of their detergency efficiency on different stains and substrates revealed that the as-synthesized bleach activators outperform the commercial tetraacetylethylenediamine (TAED) at room temperature (25°C). The detergency efficiency of sodium lauroyloxybenzene sulfonate for hydrophobic stains at a rather low temperature of 40°C remarkably rises to about 90%.

Zusammenfassung

Bleichaktivatoren verringern den Energieverbrauch und die Gewebeschädigung beim Waschen und bei der industriellen Baumwollbleiche. Hierin wird eine kostengünstige, zweistufige Methode zur Synthese von Natrium-Nonanoyloxybenzensulfonat und Natrium-Lauroyloxybenzensulfonat aus Phenol als einfaches Ausgangsmaterial für effiziente Bleichaktivatoren entwickelt. Zunächst wurde Phenol zu Natrium-p-phenolsulfonat sulfoniert. Im zweiten Schritt wurde es mit Nonanoylchlorid und Dodecanoylchlorid acyliert, um Natrium-Nonanoyloxybenzensulfonat bzw. Natrium-Lauroyloxybenzensulfonat zu erhalten. Natrium-p-phenolsulfonat und die erhaltenen Bleichaktivatoren wurden durch thermogravimetrische Analyse, IR- und 1H NMR-Spektroskopie charakterisiert. Die Untersuchung ihrer Reinigungswirkung auf verschiedenen Flecken und Substraten ergab, dass die so synthetisierten Bleichaktivatoren das kommerzielle Tetraacetylethylendiamin (TAED) bei Raumtemperatur (25°C) übertreffen. Die Waschkraft von Natriumlauroyloxybenzensulfonat für hydrophobe Flecken erhöht sich bei einer eher niedrigen Temperatur von 40°C bemerkenswerter auf ca. 90%.

About the author

Mr. Omid Shojaei

Omid Shojaei has obtained his MS in Applied Chemistry from the University of Tehran in 2007, and his thesis topic was surfactant production and application in detergents. After his graduation, he started working as a researcher in the research Group of Chemical Processes design, ACECR, for the University of Tehran. He became the permanent employee of ACECR in 2015 and now is the director of the commercialization office for chemical products at ACECER. His research interest is surfactant production and application as well as chemical scale inhibition.

  1. Conflict of Interest: The authors declare that they have no conflict of interest.

Acknowledgements

I would like to thank Behdash Chemical Co. for providing access to their facilities during the research and the University of Tehran for supporting the work. Furthermore, I would like to thank Prof. Abdoljalil Mostashari and Prof. Mehdi Ghandi for their helpful comments during working on the project.

References

1 Chen, W., Wang, L., Wang, D., Zhang, J., Sun, C. and Xu, C.: “Recognizing a limitation of the TBLC-activated peroxide system on low-temperature cotton bleaching,” Carbohydr. Polym., 140 (2016), 1–5, 2016. PMid:26876820; DOI:10.1016/j.carbpol.2015.12.01310.1016/j.carbpol.2015.12.013Suche in Google Scholar PubMed

2 Wei, D., Sun, C., Wang, M., Du, J. and Xu, C.: “Synthesis of N-[4-(dimethylalkylammoniomethyl) benzoyl]caprolactam chlorides as cationic bleach activators for low-temperature bleaching of cotton fabric under near-neutral pH conditions,” Color. Technol., 130 (6) (2014) 432–436. DOI:10.1111/cote.1211610.1111/cote.12116Suche in Google Scholar

3 Špička, N. and Tavčer, P. F.: “Low-temperature bleaching of knit fabric from regenerated bamboo fibers with different peracetic acid bleaching processes,” Text. Res. J., 85(14) (2015) 1497–1505. DOI:10.1177/004051751456372810.1177/0040517514563728Suche in Google Scholar

4 Xu, C., Long, X., Du, J. and Fu, S.: “A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton,” Carbohydr. Polym., 92(1) (2013) 249–253. PMid:23218291; DOI:10.1016/j.carbpol.2012.08.08810.1016/j.carbpol.2012.08.088Suche in Google Scholar PubMed

5 Brands, B., Brinkmann, A., Bloomfield, S. and Bockmühl, D. P.: “Microbicidal Action of Heat, Detergents and Active Oxygen Bleach as Components of Laundry Hygiene,” Tenside Surfactants Deterg. 53(5) (2016) 495–501, 2016. DOI:10.3139/113.11046410.3139/113.110464Suche in Google Scholar

6 Wang, G., de Aragão Umbuzeiro, G., Vendemiatti, J. A., Caloto de Oliveira, A., Inforçato Vacchi, F., Hussain, M., Hauser, P. J., Freeman, H. S. and Hinks, D.: “Synthesis, Characterization, and Toxicological Properties of New Cationic Bleach Activators,” J. Surfactants Deterg. 20(1) (2017) 277–285. DOI:10.1007/s11743-016-1899-310.1007/s11743-016-1899-3Suche in Google Scholar

7 Cuypers, L., Hirschen, M. and Reinhardt, G.: “Bleaching Product Development in View of Ecological Aspects,” Tenside Surfactants Deterg. 42(6) (2005) 342–346, 2005. DOI:10.3139/113.10027710.3139/113.100277Suche in Google Scholar

8 Lavrič, P. K., Kovač, F., Tavčer, P. F., Hauser, P. and Hinks, D.: “Enhanced PAA bleaching of cotton by incorporating a cationic bleach activator,” Color. Technol 123(4) (2007) 230–236, 2007. DOI:10.1111/j.1478-4408.2007.00088.x10.1111/j.1478-4408.2007.00088.xSuche in Google Scholar

9 Abdel-Halim, E. S. and Al-Deyab, S. S.: “One-step bleaching process for cotton fabrics using activated hydrogen peroxide,” Carbohydr. Polym., 92(2) (2013) 1844–1849. PMid:23399227; DOI:10.1016/j.carbpol.2012.11.04510.1016/j.carbpol.2012.11.045Suche in Google Scholar PubMed

10 Fei, X., Yao, J., Du, J., Sun, C., Xiang, Z. and Xu, C.: “Analysis of factors affecting the performance of activated peroxide systems on bleaching of cotton fabric,” Cellulose, 22(2) (2015) 1379–1388. DOI:10.1007/s10570-015-0550-110.1007/s10570-015-0550-1Suche in Google Scholar

11 Reinhardt, G.: “Fingerprints of bleach systems,” Journal of Molecular Catalysis A: Chemical 251(1–2) (2006) 177–184. DOI:10.1016/j.molcata.2006.02.02910.1016/j.molcata.2006.02.029Suche in Google Scholar

12 Zeng, H. and Tang, R.-C.: “Application of a novel bleach activator to low temperature bleaching of raw cotton fabrics," The Journal of The Textile Institute 106(8) (2015) 807–813. DOI:10.1080/00405000.2014.94576410.1080/00405000.2014.945764Suche in Google Scholar

13 Luijkx, G. C. A., Hild, R., Krijnen, E. S., Lodewick, R., Rechenbach, T. and Reinhardt, G.: “Testing of the Fabric Damage Properties of Bleach Containing Detergents," Tenside Surfactants Deterg., vol. 41, no. 4, pp. 164–168, 2004. DOI:10.3139/113.10021910.3139/113.100219Suche in Google Scholar

14 Reinhardt, G. and Ulshöfer, H.: “Testing Robustness and Compatibility of Colour Damaging Washing Tests," Tenside Surfactants Deterg., 43(1) (2006) 20–27. DOI:10.3139/113.10029610.3139/113.100296Suche in Google Scholar

15 Bianchetti, G. O., Devlin, C. L. and Seddon, K. R.: “Bleaching systems in domestic laundry detergents: A review," RSC Adv., 80(5) (2015) 65365–65384, 2015. DOI:10.1039/C5RA05328E10.1039/C5RA05328ESuche in Google Scholar

16 Sankey, J. P. and Sanderson, W. R.: “Preparation of Sulphonyl Esters," US4704236, 1986.Suche in Google Scholar

17 Gary, M. B.: “Alkanoyloxybenzenesulfonate salt production," EP0125641,1984.Suche in Google Scholar

18 Marvin, N.: “Preparation of acyloxy benzene sulfonate," EP0201222, 1986.Suche in Google Scholar

19 Cambre, C. M., Hardy, F. E. and Kitko, D. J.: “Bleach compositions comprising non-linear aliphatic peroxycarboxylic acid precursors," US4,536,314, 1985.Suche in Google Scholar

20 Gerd Reinhardt, H. J., Naumann, P., Ladwig, M., Golla, I., Pilz, T. and Wieduwilt, R. :\Process for the preparation of acyloxybenzenesulfonates," US6,369,096, 2003.Suche in Google Scholar

21 Dumas, D. J. and Subramanyam, V.: “Process for preparing benzenesulfonate salts," US5,069,828, 1991.Suche in Google Scholar

22 Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. A.: Cengage Learning India Pvt. Ltd; 5th Edition: Introduction To Spectroscopy, ISBN-13: 978–9381466476, ISBN-10: 9381466475.Suche in Google Scholar

Received: 2020-12-14
Accepted: 2021-05-22
Published Online: 2021-09-25
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tsd-2020-2339/pdf?lang=de
Button zum nach oben scrollen