Home Activity of Polyphenoloxidase in red Fuji Apples Promoted with Cationic Surfactant – Role of Surfactant Structure
Article
Licensed
Unlicensed Requires Authentication

Activity of Polyphenoloxidase in red Fuji Apples Promoted with Cationic Surfactant – Role of Surfactant Structure

  • Maozhang Tian

    Maozhang Tian: State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, P.R.China

    , Fan Zhang

    Fan Zhang: State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, P.R.China.

    , Lu Wang

    Lu Wang: State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, P.R.China.

    , Xing Dong

    Xing Dong: NO.2 Produce Plant, Xinjiang Oilfield Company, Petro China, Karamay 834008, PR China, P.R.China.

    , Lifei Zhang

    Lifei Zhang: School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R.China

    and Xia Guo

    Xia Guo: School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R.China.

    EMAIL logo
Published/Copyright: September 25, 2021
Become an author with De Gruyter Brill

Abstract

In this study, we observed the activity of polyphenoloxidase (PPO) in red Fuji apples in the presence of single-chained surfactants (including cetyl trimethyl ammonium bromide (CTAB), and dodecyl trimethyl ammonium bromide (DTAB)) and gemini surfactants (pentamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide), octamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide, dodecamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide), pentamethylene-α,ω-bis(cetyl dimethyl ammonium bromide), and octamethylene-α,ω-bis(cetyl dimethyl ammonium bromide)). It was found that all these surfactants enhanced the activity of PPO in a wide range of temperature at low content. When PPO was denatured by incubating at high temperature, the surfactants caused reactivation of PPO. Compared to the single-chained surfactants, the gemini surfactants increased PPO activity at a much lower concentration. Moreover, the single-chained surfactant and the gemini surfactant acted together to further increase PPO activity, and the synergistic effect reduced the amount of surfactant used. In addition, the Michaelis-Menten constant for PPO did not change in the presence of the surfactants, suggesting the active site should remain well with the surfactants.

Zusammenfassung

In dieser Studie haben wir die Aktivität der Polyphenoloxidase (PPO) in roten Fuji-Äpfeln in Gegenwart von den einfach-kettigen Tensiden Cetyltrimethylammoniumbromid (CTAB) und Dodecyltrimethylammoniumbromid (DTAB) und den folgenden Gemini-Tensiden untersucht: Pentamethylen-α,ωbis(dodecyldimethylammoniumbromid), Octamethylen-α,ω-bis (dodecyldimethylammoniumbromid, Dodecamethylen-α,ω-bis (dodecyldimethylammoniumbromid), Pentamethylen-α,ω-bis (cetyldimethylammoniumbromid) und Octamethylen-α,ω-bis(cetyldimethylammoniumbromid). Es wurde festgestellt, dass alle diese Tenside die Aktivität von PPO in einem weiten Temperaturbereich bei niedrigem Gehalt verstärkten. Wenn PPO durch Inkubation bei hoher Temperatur denaturiert wurde, bewirkten die Tenside eine Reaktivierung von PPO. Im Vergleich zu den ein fach-kettigen Tensiden erhöhten die Gemini-Tenside die PPO-Aktivität bei einer viel geringeren Konzentration. Darüber hinaus wirkten das einfach-kettige Tensid und das Geminitensid zusammen, um die PPO-Aktivität weiter zu erhöhen, und der synergistische Effekt reduzierte die Menge des verwendeten Tensids. Außerdem änderte sich die Michaelis-Menten-Konstante für PPO in Anwesenheit der Tenside nicht, was darauf hindeutet, dass die aktive Stelle mit den Tensiden gut erhalten bleibt.


Prof. Dr. Xia Guo School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 P.R.China Tel: +86-0514-87975590-9513 Fax: +86-0514-87975244

About the authors

Maozhang Tian

Maozhang Tian: State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, P.R.China

Fan Zhang

Fan Zhang: State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, P.R.China.

Lu Wang

Lu Wang: State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, P.R.China.

Xing Dong

Xing Dong: NO.2 Produce Plant, Xinjiang Oilfield Company, Petro China, Karamay 834008, PR China, P.R.China.

Lifei Zhang

Lifei Zhang: School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R.China

Prof. Dr. Xia Guo

Xia Guo: School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R.China.

Acknowledgements

This study was supported by national natural scientific foundation of China (No. 21872120) and a project funded by the priority academic program development of Jiangsu higher education institutions (PAPD).

References

1 Robb, D. A.: Copper proteins and copper enzymes. R. Lonite ed. Vol. II. 1984, Boca Raton, FL: CRC Press.Search in Google Scholar

2 Mayer, A. M.: Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67, 2318–2331(2006). PMid:16973188; DOI:10.1016/j.phytochem.2006.08.00610.1016/j.phytochem.2006.08.006Search in Google Scholar PubMed

3 Rawel, H. and Rohn, S.: Nature of hydroxycinnamate-protein interactions. Phytochem. Rev. 9, 93–101(2010). DOI:10.1007/s11101-009-9154-410.1007/s11101-009-9154-4Search in Google Scholar

4 Sener, A. and Unal, M.: Purification and characterization of polyphenol oxidase from Akko XIII loquat (Eriobotrya japonica cv Akko XIII). Food Biotechnol. 25, 30–42(2011). DOI:10.1080/08905436.2011.54711510.1080/08905436.2011.547115Search in Google Scholar

5 Sugumaran, M., Nellaiappan, K. and Valivittan, K.: A new mechanisim for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase. Arch. Biochem. Biophys. 379, 252–260(2000). PMid:10898942; DOI:10.1006/abbi.2000.188410.1006/abbi.2000.1884Search in Google Scholar PubMed

6 Yoruk, R. and Marshall, M. R.: Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 27, 361–422(2006). DOI:10.1111/j.1745-4514.2003.tb00289.x10.1111/j.1745-4514.2003.tb00289.xSearch in Google Scholar

7 Soysal, C.: Kinetics and thermal activation/inactivation of starking apple polyphenol oxidase. J. Food Process. Pres. 32, 1034–1046(2008). DOI:10.1111/j.1745-4549.2008.00298.x10.1111/j.1745-4549.2008.00298.xSearch in Google Scholar

8 Queiroz, C., d. Silva, A. J. R. and Lopes, M. L. M.: Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale, L.) afer processing. Food Chem. 125,128–132(2011). DOI:10.1016/j.foodchem.2010.08.04810.1016/j.foodchem.2010.08.048Search in Google Scholar

9 Reinkensmeier, A., Steinbrenner, K., Homann, T., Bubler, S. and Rohn, S. et al.: Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds. Food Chem. 194, 76–85(2016). PMid:26471529; DOI:10.1016/j.foodchem.2015.07.14510.1016/j.foodchem.2015.07.145Search in Google Scholar PubMed

10 Can, Z., Dincer, B., Sahin, H., Baltas, N. and Yildiz, O. et al.: Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey. J. Enzyme Inhib. Med. Chem. 29, 829–835(2014). PMid:24246090; DOI:10.3109/14756366.2013.85814410.3109/14756366.2013.858144Search in Google Scholar PubMed

11 Liu, F., Zhao, J., Gan, Z. and Ni, Y.: Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji). Food Chem. 173, 86–91(2015). PMid:25465998; DOI:10.1016/j.foodchem.2014.09.16910.1016/j.foodchem.2014.09.169Search in Google Scholar PubMed

12 Cheema, S. and Sommerhalter, M.: Characterization of polyphenol oxidase activity in Ataulfo mango. Food Chem. 171, 382–387(2015). PMid:25308684; DOI:10.1016/j.foodchem.2014.09.01110.1016/j.foodchem.2014.09.011Search in Google Scholar

13 Ridgway, T. J. and Tucker, G. A.: Procedure for the partial purification of apple leaf polyphenol oxidase suitable for commercial application. Enzyme Microb. Tchnol. 25, 225–231(1999). DOI:10.1016/S0141-0229(98)00109-410.1016/S0141-0229(98)00109-4Search in Google Scholar

14 Wong-Paz, J. E., Muniz-Marques, D. B., Aguilar, C. N., Sotin, H. and Guyot, S.: Enzymatic synthesis, purification and in vitro antioxidant capacity of polyphenolic oxidation products from apple juice. LWT-Food Sci. Technol. 64, 1091–1098(2015). DOI:10.1016/j.lwt.2015.07.00710.1016/j.lwt.2015.07.007Search in Google Scholar

15 Alam, P., Rabbani, G., Badr, G., Badr, B. M. and Khan, R. H.: The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase. Cell Biochem. Biophys. 71, 1199–1206(2015). PMid:25424356; DOI:10.1007/s12013-014-0329-210.1007/s12013-014-0329-2Search in Google Scholar

16 Han, Y. and Wang, Y.: Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys. Chem. Chem. Phys. 13, 1939–1956(2011). PMid:21225063; DOI:10.1039/γ0cp01196 g10.1039/γ0cp01196gSearch in Google Scholar

17 Guo, J., Wan, J. and Guo, X.: Pineapple peel bromelain extraction using gemini surfactant-based reverse micelle – Role of spacer of gemini surfactant. Sep. Purif. Technol. 190, 156–164(2018). DOI:10.1016/j.seppur.2017.08.05110.1016/j.seppur.2017.08.051Search in Google Scholar

18 Wan, J., Guo, J., Miao, Z. and Guo, X.: Reverse micellar extraction of bromelain from pineapple peel – Effect of surfactant structure. Food Chem. 197, 450–456(2016). PMid:26616974; DOI:10.1016/j.foodchem.2015.10.14510.1016/j.foodchem.2015.10.145Search in Google Scholar

19 Selles-Marchart, S., Casado-Vela, J. and Bru-Martinez, R.: Isolation of a latent polyphenol oxidase from loquat fruit (Eriobotrya japonica Lindl.): Kinetic characterization and comparison with the active form. Arch. Biochem. Biophys. 446, 175–185(2006). PMid:16406214; DOI:10.1016/j.abb.2005.12.00410.1016/j.abb.2005.12.004Search in Google Scholar

20 Savelli, G., Spretib, N. and Profioa, P. D.: Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Curr. Opin. Colloid Interf. Sci. 5, 111–117(2000). DOI:10.1016/S1359-0294(00)00043-110.1016/S1359-0294(00)00043-1Search in Google Scholar

21 Yang, Z., Deng, J. and Chen, L.-F.: Effect of ionic and non-ionic surfactants on the activity and stability of mushroom tyrosinase. J. Mol. Catal. B-Enzym. 47, 79–85(2007). DOI:10.1016/j.molcatb.2007.03.00110.1016/j.molcatb.2007.03.001Search in Google Scholar

22 Okot-Kotber, M., Liavoga, A., Yong, K.-J. and Bagorogoza, K.: Activation of Polyphenol Oxidase in Extracts of Bran from Several Wheat (Triticum aestivum) Cultivars Using Organic Solvents, Detergents, and Chaotropes. J. Agric. Food Chem. 50, 2410–2417(2002). PMid:11929305; DOI:10.1021/jf011283x10.1021/jf011283xSearch in Google Scholar

23 Zana, R., Benrraou, M. and Rueff, R.: Alkanediyl-a,w-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7, 1071–1075(1991). DOI:10.1021/la00054a00810.1021/la00054a008Search in Google Scholar

24 Ding, X., Cai, J. and Guo, X.: Extraction of ovalbumin with gemini surfactant reverse micelles – Effect of gemini surfactant structure, Sep. Purif. Technol. 158, 367–373(2016). DOI:10.1016/j.seppur.2015.12.04210.1016/j.seppur.2015.12.042Search in Google Scholar

25 Tian, M., Zhu, J., Guo, J. and Guo, X.: Activity of Bromelain with Cationic Surfactants and the Correlation with the Change of 1H NMR Signals, J. Surfact. Deterg. (2020). DOI 10.1002/jsde.12454.10.1002/jsde.12454Search in Google Scholar

26 Galeazzi, M. A. M. and Sgarbieri, V. C. J.: Substrate specificity and inhibition of polyphenoloxidase from a dwarf variety of banana (Musa Cavendishii, L.). J. Food Sci. 46, 1404–1406(1981). DOI:10.1111/j.1365-2621.1981.tb04184.x10.1111/j.1365-2621.1981.tb04184.xSearch in Google Scholar

27 Mir, M. A., Khan, J. M., Khan, R. H., Dar, A. A. and Rather, G. M.: Interaction of cetyltrimethylammonium bromide and its gemini homologue bis(cetyldimethylammonium)butane dibromide with xanthine oxidase. J. Phys. Chem. B 116, 5711–5718(2012). PMid:22530988; DOI:10.1021/jp207803γ10.1021/jp207803γSearch in Google Scholar

28 Rocha, A. M. C. N. and Morais, A. M. M. B.: Characterization of polyphenoloxidase (PPO) extracted from ’Jonagored’ apple. Food Control 12, 85–90(2001). DOI:10.1016/S0956-7135(00)00026-810.1016/S0956-7135(00)00026-8Search in Google Scholar

29 Nokthai, P., Lee, V. S. and Shank, L.: Molecular modeling of peroxidase and polyphenol oxidase: substrate specificity and active site comparison. Int. J. Mol. Sci. 11, 3266–3276(2010). PMid:20957092; DOI:10.3390/ijms1109326610.3390/ijms11093266Search in Google Scholar PubMed PubMed Central

30 Tikariha, D., Ghosh, K. K., Barbero, N., Quagliotto, P. and Ghosh, S.: Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture. Colloids Surf. A 381, 61–69(2011). DOI:10.1016/j.colsurfa.2011.03.02710.1016/j.colsurfa.2011.03.027Search in Google Scholar

31 Zhao, J., Christian, S. D. and Fung, B. M.: Mixtures of monomeric and dimeric cationic surfactants. J. Phys. Chem. B 102, 7613–7618(1998). DOI:10.1021/jp982131 g10.1021/jp982131gSearch in Google Scholar

Supporting Information

Table S1

Elemental analysis data for the gemini surfactants

surfactant C/% N/% H/%
C12–C5–C12 Calcd. 60.35 4.27 11.05
(C33H72N2Br2) Found 60.44 4.06 11.21
C12–C8–C12 Calcd. 61.87 4.01 11.25
(C36H78N2Br2) Found 61.95 3.96 11.20
C12–C12–C12 Calcd. 63.64 3.71 11.48
(C40H86N2Br2) Found 63.58 3.96 11.20
C16–C5–C16 Calcd. 64.04 3.64 11.54
(C41H88N2Br2) Found 64.25 3.91 11.40
C16–C8–C16 Calcd. 65.16 3.46 11.68
(C44H94N2Br2) Found 65.32 3.21 11.76
Figure S1 1H NMR spectrum for C12–C8–C12 in D2O
Figure S1

1H NMR spectrum for C12–C8–C12 in D2O

Figure S2 1H NMR spectrum for C16–C8–C16 in D2O
Figure S2

1H NMR spectrum for C16–C8–C16 in D2O

Figure S3 1H NMR spectrum for C12–C5–C12 in D2O
Figure S3

1H NMR spectrum for C12–C5–C12 in D2O

Figure S4 1H NMR spectrum for C16–C5–C16 in D2O (sodium 3-(trimethyl silyl)-1-propane sulfonate (DSS, dissolved in D2O) was used as an external standard)
Figure S4

1H NMR spectrum for C16–C5–C16 in D2O (sodium 3-(trimethyl silyl)-1-propane sulfonate (DSS, dissolved in D2O) was used as an external standard)

Figure S5 1H NMR spectrum for C12–C12–C12 in D2O
Figure S5

1H NMR spectrum for C12–C12–C12 in D2O

Figure S6 Activity of crude PPO in the presence of surfactant at different pH
Figure S6

Activity of crude PPO in the presence of surfactant at different pH

Received: 2020-10-31
Accepted: 2021-05-22
Published Online: 2021-09-25
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2020-2322/html
Scroll to top button