Home Rk material measure
Article
Licensed
Unlicensed Requires Authentication

Rk material measure

A model based design
  • Jörg Seewig

    Prof. Dr.-Ing. Jörg Seewig studied electrical engineering at the Leibniz Universität Hannover. He gained his PhD in 2000 with a thesis on signal processing for surface roughness. Since 2008, he is chair of the institute for measurement and sensor technology at the Technische Universität Kaiserslautern. He is one of the German experts in Working Group 15 (Filtration) and Working Group 15 (Surface Texture) of ISO/TC213 Geometric Product Specification. He is project leader of various ISO documents e. g. ISO 16610-28, ISO 16610-31, ISO 16610-71 and ISO 21920-2.

    EMAIL logo
    , Matthias Eifler

    Dr.-Ing. Matthias Eifler, M. B. A. studied mechanical engineering at the Technische Universität Kaiserslautern. He gained his PhD in 2016 with a thesis on the model-based design of material measures. Since 2016 he is a Post-Doctoral researcher at the institute for measurement and sensor technology at the Technische Universität Kaiserslautern. His research interests include calibration procedures, design and manufacturing of material measures and signal processing in geometrical product specification. He is CEO of the Opti-Cal GmbH.

    , Dorothee Hüser

    Dr. habil. Dorothee Hüser, researcher at Division Precision Engineering of Physikalisch-Technische Bundesanstalt (PTB) works on Dimensional Surface Metrology and on Nanoparticle Metrology. Since 2014, she has been expert in WG 15 Filtration and WG 16 Surface Texture of ISO/TC213 Geometric Product Specification. During her stay at Helmut Schmidt University, 1995 - 2002, her field of research was dimensional micrometrology by atomic force microscopy, which she finished with a Habilitation thesis. From 1987 - 1995 she worked at PTB on coordinate metrology, in particular investigating measurement uncertainties of optical sensors. She wrote her PhD thesis on this topic being supervised by Prof. Dr.-Ing. Dr. hc. Tilo Pfeifer. In 1987 she finished her Physics studies at Aachen University with a Diploma Thesis on Elementary Particle Physics.

    and Rudolf Meeß

    Dr.-Ing. Rudolf Meeß, born 1966, is head of the working group manufacturing technology at Physikalisch-Technische Bundesanstalt (PTB), Braunschweig.

Published/Copyright: August 10, 2019

Abstract

The standard ISO 13565-2 defines the Rk parameters for the functional characterisation of technical surfaces. So far, no particular material measures for the calibration of these parameters have been defined in the international standardization. For the application and the functional behaviour of technical surfaces the Rk parameters however have a critical significance, so there is a demand by the industry to calibrate these parameters as they are increasingly applied for the quality assessment of workpieces. In the present paper, a proposal for suitable material measures is presented. An algorithm is described, which transforms the data of a real measured profile in a way that the exact defined parameters of Rk, Rpk and Rvk are equated. The material measures geometry corresponds to its later application and the target parameters are almost freely selectable. The approach for transforming surface profile data with the aid of the Abbott curve is introduced generically, solves an inverse problem and considers the influences from the manufacturing and measuring process. The designed material measure is manufactured with the aid of ultra-precision turning. In matters of the aspired industrial application, comparison measurements are carried out in order to examine the practical abilities of the material measure and the repeatability of the approach is proven.

Zusammenfassung

Die Norm DIN EN ISO 13565-2 definiert die Rk-Kenngrößen zur funktionellen Charakterisierung technischer Oberflächen. Bisher wurden allerdings keine speziellen Normale für die Kalibrierung dieser Kenngrößen in der internationalen Standardisierung vorgesehen. Für die Praxis und das funktionelle Verhalten technischer Oberflächen sind die Rk-Parameter allerdings von hoher Relevanz und da die Kenngrößen entsprechend verstärkt zur Qualitätsbeurteilung technischer Bauteile genutzt werden, existiert ein industrieller Bedarf sie zu kalibrieren. In der vorliegenden Veröffentlichung wird ein Konzept für entsprechende Kalibriernormale vorgestellt. Ein Algorithmus, welcher die Messdaten eines gemessenen Profils derart transformiert, dass exakt definierte Parameterwerte von Rk, Rpk und Rvk abgebildet werden, wird vorgestellt. Die Geometrie des Normals hängt mit seiner späteren Anwendung zusammen und die Ziel-Kenngrößen können nahezu beliebig gewählt werden. Der Ansatz ein Oberflächenprofil unter Zuhilfenahme seiner Abbott-Kurve zu transformieren wird generisch eingeführt, löst ein inverses Problem und berücksichtigt die Einflüsse aus Fertigung und Messung. Das ausgelegte Kalibriernormal wird mithilfe eines Ultrapräzisionsdrehprozesses hergestellt. Im Hinblick auf die industrielle Anwendung werden Vergleichsmessungen durchgeführt, um die praktischen Fähigkeiten des Normals und die Widerholbarkeit des Ansatzes zu demonstrieren.

Award Identifier / Grant number: 172116086

Funding statement: This project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 172116086 - SFB 926. The Rk material measure is commercially available through the company TEVOB.

About the authors

Jörg Seewig

Prof. Dr.-Ing. Jörg Seewig studied electrical engineering at the Leibniz Universität Hannover. He gained his PhD in 2000 with a thesis on signal processing for surface roughness. Since 2008, he is chair of the institute for measurement and sensor technology at the Technische Universität Kaiserslautern. He is one of the German experts in Working Group 15 (Filtration) and Working Group 15 (Surface Texture) of ISO/TC213 Geometric Product Specification. He is project leader of various ISO documents e. g. ISO 16610-28, ISO 16610-31, ISO 16610-71 and ISO 21920-2.

Matthias Eifler

Dr.-Ing. Matthias Eifler, M. B. A. studied mechanical engineering at the Technische Universität Kaiserslautern. He gained his PhD in 2016 with a thesis on the model-based design of material measures. Since 2016 he is a Post-Doctoral researcher at the institute for measurement and sensor technology at the Technische Universität Kaiserslautern. His research interests include calibration procedures, design and manufacturing of material measures and signal processing in geometrical product specification. He is CEO of the Opti-Cal GmbH.

Dorothee Hüser

Dr. habil. Dorothee Hüser, researcher at Division Precision Engineering of Physikalisch-Technische Bundesanstalt (PTB) works on Dimensional Surface Metrology and on Nanoparticle Metrology. Since 2014, she has been expert in WG 15 Filtration and WG 16 Surface Texture of ISO/TC213 Geometric Product Specification. During her stay at Helmut Schmidt University, 1995 - 2002, her field of research was dimensional micrometrology by atomic force microscopy, which she finished with a Habilitation thesis. From 1987 - 1995 she worked at PTB on coordinate metrology, in particular investigating measurement uncertainties of optical sensors. She wrote her PhD thesis on this topic being supervised by Prof. Dr.-Ing. Dr. hc. Tilo Pfeifer. In 1987 she finished her Physics studies at Aachen University with a Diploma Thesis on Elementary Particle Physics.

Rudolf Meeß

Dr.-Ing. Rudolf Meeß, born 1966, is head of the working group manufacturing technology at Physikalisch-Technische Bundesanstalt (PTB), Braunschweig.

References

1. Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 2: Height characterization using the linear material ratio curve (ISO 13565-2:1996).Search in Google Scholar

2. Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters (ISO 4287:1997 + Cor 1:1998 + Cor 2:2005 + Amd 1:2009).Search in Google Scholar

3. Wiehr, C.; Seewig, J. 2011 3D-Kenngrößen nach ISO 25178. In: Alexander Wanner (Ed.): Fortschritte in der Metallographie, Vortragstexte der 45. Metallographie-Tagung, 14.-16. September 2011, Karlsruhe. Frankfurt, MAT-INFO, Werkstoff-Informationsges, 3–8.Search in Google Scholar

4. Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 1: Filtering and general measurement conditions (ISO 13565-1: 1996).Search in Google Scholar

5. Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 3: Height characterization using the material probability curve (ISO 13565-3:1998).Search in Google Scholar

6. Pawlus, P.; Cieslak, T.; Mathia, T. 2009 The study of cylinder liner plateau honing processes. Journal of Materials Processing Technology 209, 6078–6086.10.1016/j.jmatprotec.2009.04.025Search in Google Scholar

7. DIN Deutsches Institut für Normung e.V.: DIN 4776 - Kenngrößen Rk, Rpk, Rvk, Mr1, Mr2 zur Beschreibung des Materialanteils im Rauheitsprofil – Meßbedingungen und Auswerteverfahren Anwendungshinweise und Beispiele, May 1990.Search in Google Scholar

8. DIN Deutsches Institut für Normung e.V.: Beiblatt 1 zu DIN 4776 -Kenngrößen Rk, Rpk, Rvk, Mr1, Mr2 zur Beschreibung des Materialanteils im Rauheitsprofil – Meßbedingungen und Auswerteverfahren Anwendungshinweise und Beispiele, May 1990.Search in Google Scholar

9. Geometrical Product Specifications (GPS), Surface texture: Profile method; Measurement standards, Part 1: Material measures (ISO 5436-1:2000).Search in Google Scholar

10. Geometrical product specification (GPS), Surface texture: Areal – Part 70: Material measures (ISO 25178-70:2014).Search in Google Scholar

11. Häsing, J. 1965 Herstellung und Eigenschaften von Referenznormalen für das Einstellen von Oberflächenmeßgeräten, Werkstatttechnik 55, 8, 380–382.Search in Google Scholar

12. Hillmann, W.; Jäger, V.; Krystek, M. 1997 Superfeine Rauhnormale: … mit unregelmäßigem Profil zum Kalibrieren von mechanisch und optisch antastenden Oberflächenmeßgeräten. qz - Qualität und Zuverlässigkeit 42, 1, 76–79.Search in Google Scholar

13. Seewig, J.; Eifler, M.; Schneider, F.; Aurich, J.C. 2016 Design and verification of geometric roughness standards by reverse engineering. Procedia CIRP 45, 259–262.10.1016/j.procir.2016.02.157Search in Google Scholar

14. Eifler, M.; Schneider, F.; Seewig, J.; Kirsch, B.; Aurich, J.C. 2016 Manufacturing of new roughness standards for the linearity of the vertical axis - Feasibility study and optimization. Engineering Science and Technology, an International Journal, 4, 1993–2001.10.1016/j.jestch.2016.06.009Search in Google Scholar

15. Gao, F.; Leach, R. K.; Petzing, J.; Coupland, J. M. 2008 Surface measurement errors using commercial scanning white light interferometers. Measurement Science and Technology 19, 1, 015303.10.1088/0957-0233/19/1/015303Search in Google Scholar

16. Koenders, L.; Dai, G.; Dziomba, T.; Felgner, A.; Flügge, J.; Kuetgens, U. 2011 Von konventionellen zu kristallinen Normalen: Über die Nutzung kristalliner Strukturen für die Nanometrologie. In: Physikalisch-Technische Bundesanstalt (Ed.): PTB Mitteilungen 2.2011: Themenschwerpunkt Nanometrologie, 170–179.Search in Google Scholar

17. Frühauf, J.; Krönert, S. 2004 Linear Silicon Gratings with different profiles: Trapezoidal, Triangular, Rectangular, Arched. In: Dietzsch, Michael (Ed.): Proceedings of the XI. International Colloquium on Surfaces: Part II. Aachen: Shaker, 75–83.Search in Google Scholar

18. Neuschaefer-Rube, U.; Neugebauer, M.; Dziomba, T.; Danzebrink, H.-U.; Koenders, L.; Bosse, H. 2011 Neuere Entwicklungen von Normalen für die 3D-Mikro- und Nanometrologie. tm - Technisches Messen 78, 3, 118–126.10.1524/teme.2011.0129Search in Google Scholar

19. Kourouklos, C.: Entwicklung und Fertigung von Nano-Raunormalen: Dissertation. Garbsen: PZH, Produktionstechnisches Zentrum, 2007 (Berichte aus dem Imt 2007,02).Search in Google Scholar

20. Eifler, M. 2016 Modellbasierte Entwicklung von Geometrienormalen zur geometrischen Produktspezifikation, Dissertation, In: Seewig, J. (Hrsg.): Berichte aus dem Lehrstuhl für Messtechnik & Sensorik 3, Kaiserslautern: Technische Universität Kaiserslautern.Search in Google Scholar

21. Geometrical product specifications (GPS) Filtration, Part 31: Robust profile filters: Gaussian regression filters 2010.Search in Google Scholar

22. Leach, R.; Giusca, C.; Rickens, K.; Riemer, O.; Rubert, P. 2014 Development of material measures for performance verifying surface topography measuring instruments. Surf. Topogr.: Metrol. Prop. 2 025002.10.1088/2051-672X/2/2/025002Search in Google Scholar

23. Krüger-Sehm, R.; Bakucz, P.; Jung, L.; Wilhelms, H. 2007 Chirp-Kalibriernormale für Oberflächenmessgeräte Technisches Messen 74 11 572–576.10.1524/teme.2007.74.11.572Search in Google Scholar

24. Geometrical product specifications (GPS) – Filtration – Part 40: Morphological profile filters: Basic concepts (ISO/DIS 16610-40:2012).Search in Google Scholar

25. Seewig, J.; Eifler, M.: Nahe an der Anwendung – Geometrienormale zur Kalibrierung von Tastschnittgeräten, qz – Qualität und Zuverlässigkeit 03/2015, 50–53.Search in Google Scholar

26. Giusca, C.; Leach, R.; Helary, F.; Gutauskas, T.; Nimishakavi, L. 2012 Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness Meas. Sci. Technol. 23 035008.10.1088/0957-0233/23/3/035008Search in Google Scholar

Received: 2019-06-21
Accepted: 2019-07-25
Published Online: 2019-08-10
Published in Print: 2019-09-05

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2019-0091/html
Scroll to top button