Startseite Mathematik Lumped parameter heart model with valve dynamics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lumped parameter heart model with valve dynamics

  • Sergey S. Simakov EMAIL logo
Veröffentlicht/Copyright: 28. November 2019

Abstract

In this work, the lumped parameter model of the left heart is presented. It is based on the concept of the time-varying elastance of myocardium and includes the model of the heart valve dynamics. Comparison of the models with instant and smooth valve opening and closing is given, as well as simulations of pathologies such as mitral valve stenosis and aortic valve insufficiency are addressed.

MSC 2010: 65D25; 37M05; 92B99
  1. Funding: The research was supported by the Russian Foundation for Basic Research 18-00-01524, 18-31-20048, 18-00-01661.

References

[1] K. Barret, H. Brooks, S. Boitano, and S. Barman, Ganong’s Review of Medical Physiology. 23rd edition, The McGraw-Hill, 2010.Suche in Google Scholar

[2] N. Bessonov, A. Sequeira, S. Simakov, Yu. Vassilevski, and V. Volpert, Methods of blood flow modelling. Math. Modelling Natur. Phenomena11 (2016), No. 1, 1–25.10.1051/mmnp/201611101Suche in Google Scholar

[3] A. G. Borzov, S. I. Mukhin, and N. V. Sosnin, Conservative schemes of matter transport in a system of vessels closed by the heart, Diff. Equ. 48 (2012), No. 7, 919–928.10.1134/S0012266112070038Suche in Google Scholar

[4] J. C. Butcher and P. Sehnalová, Predictor–corrector Obreshkov pairs. Computing95 (2013), No. 5, 355–371.10.1007/s00607-012-0258-0Suche in Google Scholar

[5] D. Canuto, K. Chong, C. Bowles, E. P. Dutson, J. D. Eldredge, and P. Benharash, A regulated multiscale closed-loop cardiovascular model, with applications to hemorrhage and hypertension. Int. J. Numer. Methods Biomed. Engrg. (2018), e2975.10.1002/cnm.2975Suche in Google Scholar PubMed

[6] M. Capoccia, Development and characterization of the arterial Windkessel and its role during left ventricular assist device. Artificial Organs39 (2015), No. 8, E138–E153.10.1111/aor.12532Suche in Google Scholar PubMed

[7] K. B. Campbell, A. M. Simpson, S. G. Campbell, H. L. Granzier, and B. K. Slinker, Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationship, J. Appl. Physiology104 (2008), No. 4, 958–975.10.1152/japplphysiol.00912.2007Suche in Google Scholar PubMed

[8] V. Diaz-Zuccarini and J. LeFevre, An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes, Computers in Biology and Medicine37, (2007), 774–784.10.1016/j.compbiomed.2006.07.002Suche in Google Scholar PubMed

[9] T. M. Gamilov, F. Liang, and S. S. Simakov, Mathematical modeling of the coronary circulation during cardiac pacing and tachycardia. Lobachevskii J. Math. 40 (2019), No. 4, 448–458.10.1134/S1995080219040073Suche in Google Scholar

[10] D. G. Gognieva, A. L. Syrkin, Yu. V. Vassilevski, et.al., Noninvasive assessment of fractional flow reserve using mathematical modeling of coronary flow. Kardiologiya58 (2018), No. 12, 85–92 (in Russian).10.18087/cardio.2018.12.10164Suche in Google Scholar PubMed

[11] D. G. Gognieva, T. M. Gamilov, R. A. Pryamonosov, et.al., Noninvasive assessment of the fractional reserve of coronary blood flow with a one-dimensional mathematical model. Preliminary results of the pilot study. Russ. J. Cardiology24 (2019), No. 3, 60–68.10.15829/1560-4071-2019-3-60-68Suche in Google Scholar

[12] F. Kappel and R. O. Peer, A mathematical model for fundamental regulation processes in the cardiovascular system, J. Math. Biology31 (1993), 611–631.10.1007/BF00161201Suche in Google Scholar PubMed

[13] Y. S. Kim, E.-H. Kim, H.-G. Kim, E. B. Shim, K.-S. Song, and K. M. Lim, Mathematical analysis of the effects of valvular regurgitation on the pumping efficacy of continuous and pulsatile left ventricular assist devices, Integrative Medicine Research5 (2016), 22–29.10.1016/j.imr.2016.01.001Suche in Google Scholar PubMed PubMed Central

[14] A. S. Kholodov, A. I. Lobanov, and A. V. Evdokimov, Numerical schemes for solving stiff ordinary differential equations in the space of undetermined coefficients. MFTI, Moscow, (1985), p.49 (in Russian).Suche in Google Scholar

[15] A. S. Kholodov, Some dynamical models of multi-dimensional problems of respiratory and circulatory systems including their interaction and matter transport. Computer Models and Medicine Progress. Nauka, Moskva, 2001, 127–163 (in Russian).Suche in Google Scholar

[16] Th. Korakianitis and Y. Shi, Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomechanics39 (2006), No. 11, 1964–1982.10.1016/j.jbiomech.2005.06.016Suche in Google Scholar PubMed

[17] Th. Korakianitis and Y. Shi, A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Medical Engrg.&Physics28 (2006), 613–628.10.1016/j.medengphy.2005.10.004Suche in Google Scholar PubMed

[18] F. Liang and H. Liu, A closed-loop lumped parameter computational model for human cardiovascular system JSME Int. J. Series C48 (2005), No. 4, 484–493.10.1299/jsmec.48.484Suche in Google Scholar

[19] F. Liang and H. Liu, Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system, J. Physiological Sci. 56 (2006), No. 1, 45–65.10.2170/physiolsci.RP001305Suche in Google Scholar PubMed

[20] F. Liang, S. Takagi, R. Himeno, and H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenosis, Medical & Biological Engineering & Computing47 (2009), 743–755.10.1007/s11517-009-0449-9Suche in Google Scholar PubMed

[21] F.Y. Liang, S. Takagi, R. Himeno, and H. Liu, Biomechanical characterisation of ventricular–arterial coupling during aging: A multi-scale model study, J. Biomechanics42 (2009), No. 6, 692–704.10.1016/j.jbiomech.2009.01.010Suche in Google Scholar PubMed

[22] M. S. Olufsen, J. T. Ottesen, H. T. Tran, L. M. Ellwein, L. A. Lipsitz, and V. Novak, Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, J. Appl. Physiology99 (2005), No. 4, 1523–1537.10.1152/japplphysiol.00177.2005Suche in Google Scholar PubMed PubMed Central

[23] R. F. Schmidt and G. Thews, Human Physiology. Vol. 2, 2nd edition. Springer-Verlag, Berlin–Heidelberg, 1989.10.1007/978-3-642-73831-9Suche in Google Scholar

[24] S. S. Simakov and A. S. Kholodov, Computational study of oxygen concentration in human blood under low frequency disturbances. Math. Models Comp. Simul. 1 (2009), No. 2, 283–295.10.1134/S2070048209020112Suche in Google Scholar

[25] S. S. Simakov, Modern methods of mathematical modeling of blood flow using reduced order methods. Comp. Research Modeling10 (2018), No. 5, 581–604 (in Russian).10.20537/2076-7633-2018-10-5-581-604Suche in Google Scholar

[26] Y. Shi, P. Lawford, and R. Hose, Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System, Biomed. Engrg. OnLine10 (2011), 33.10.1186/1475-925X-10-33Suche in Google Scholar PubMed PubMed Central

[27] E. B. Shim, J. Y. Sah, and C. H. Youn, Mathematical modelling of cardiovascular system dynamics using a lumped parameter method. Japan. J. Physiology54 (2004), 545–553.10.2170/jjphysiol.54.545Suche in Google Scholar PubMed

[28] H. Suga, Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressure-volume relatio. IEEE Transactions on Biomedical Engineering18 (1971), No. 1, 47–55.10.1109/TBME.1971.4502789Suche in Google Scholar

[29] H. Suga, Cardiac energetics: from EMAX to pressure-volume area. Clinical Experim. Pharmacol. Physiol. 30 (2003), 580–585.10.1046/j.1440-1681.2003.03879.xSuche in Google Scholar PubMed

[30] F. A. Syomin, M. V. Zberia, N. A. Koubassov, and A. K. Tsaturyan, Mathematical modelling of the dependence of the performance of the left ventrical of the heart on preload and afterload. Biophysics60 (2015), No. 6, 983–987.10.1134/S0006350915060226Suche in Google Scholar

[31] F. A. Syomin and A. K. Tsaturyan, A simple model of cardiac muscle for multiscale simulation: Passivemechanics, crossbridge kinetics and calcium regulation, J. Theoretical Biology420 (2017), No. 7, 105–116.10.1016/j.jtbi.2017.02.021Suche in Google Scholar PubMed

[32] P. R. Trenhago, L. G. Fernandes, L. O. Müller, P. J. Blanco, and R. A. Feijóo, An integrated mathematical model of the cardiovascular and respiratory systems. Int. J. Numer. Methods Biomed. Engrg. (2016), e02736.10.1002/cnm.2736Suche in Google Scholar PubMed

[33] K. R. Walley, Left ventricular function: time-varying elastance and left ventricular aortic coupling. Critical Care20 (2016), No. 270.10.1186/s13054-016-1439-6Suche in Google Scholar PubMed PubMed Central

[34] J. Werner, D. Bohringer, and M. Hexamer, Simulation and prediction of cardiotherapeutical phenomena from a pulsatile model coupled to the Guyton circulation model, IEEE Trans. Biomed. Engrg. 49, (2002), 430–439.10.1109/10.995681Suche in Google Scholar

[35] M. Zacek and E. Krause, Numerical simulation of the blood flow in the human cardiovascular system. J. Biomechanics29 (1996), 13–20.10.1016/0021-9290(95)00027-5Suche in Google Scholar

Received: 2019-08-20
Accepted: 2019-08-22
Published Online: 2019-11-28
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2019-0025/html
Button zum nach oben scrollen