Startseite Mathematik Computer modelling of initial platelet adhesion during microvascular thrombosis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computer modelling of initial platelet adhesion during microvascular thrombosis

  • Aleksey V. Belyaev EMAIL logo
Veröffentlicht/Copyright: 28. November 2019

Abstract

Hemostasis is one of the most important protective mechanisms that functions to maintain vascular integrity and prevent bleeding. In arterial and microvascular circulation, where the near-wall shear stress is relatively high, the hemostatic response begins with aggregation of platelets on the injured endothelium or collagen. Regulation of hemostasis and thrombosis is immensely complex, as it depends on the blood cell adhesion and fluid dynamics. A possible regulatory mechanism relies on the coil-stretch transitions in a plasma protein — von Willebrand factor — that serves as a ligand to platelet adhesive membrane receptors. In this work, the initial stages of thrombus growth are studied using a 3D computer model that explicitly accounts for the shear-dependent vWf conformation.

MSC 2010: 92C35; 76Z05
  1. Funding: This research was supported by the Russian Science Foundation (Project No. 17-71-10150).

Acknowledgement

The author acknowledges the grant from the Russian Science Foundation (Project No. 17-71-10150). The computational resources were provided by the Supercomputing Center of Moscow State University (supercomputers Lomonosov and Lomonosov-2).

References

[1] P. Ahlrichs and B. Dunweg, Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Physics111 (1999), No. 17, 8225–8239.10.1063/1.480156Suche in Google Scholar

[2] C. Aponte-Santamaria, V. Huck, S. Posch, A. K. Bronowska, S. Grässle, M. A. Brehm, T. Obser, R. Schneppenheim, P. Hinterdorfer, S. W. Schneider, C. Baldauf, and F. Gräter, Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. Biophys. J. 108 (2015), 2312–2321.10.1016/j.bpj.2015.03.041Suche in Google Scholar PubMed PubMed Central

[3] N. Begent and G. V. R. Born, Growth rate in vivo of platelet thrombi, produced by iontophoresis of ADP, as a function of mean blood flow velocity. Nature227 (1970), 926–930.10.1038/227926a0Suche in Google Scholar PubMed

[4] A. V. Belyaev, Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces. PLOS ONE12 (2017), No. 8, e0183093.10.1371/journal.pone.0183093Suche in Google Scholar PubMed PubMed Central

[5] A. V. Belyaev, M. A. Panteleev, and F. I. Ataullakhanov, Threshold of microvascular occlusion: injury size defines the thrombosis scenario. Biophys. J. 109 (2015), 450–456.10.1016/j.bpj.2015.06.019Suche in Google Scholar PubMed PubMed Central

[6] A. V. Belyaev, Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor. Mat. Mod. Nat. Phenom. 13 (2018), 44.10.1051/mmnp/2018043Suche in Google Scholar

[7] A. V. Belyaev, Long ligands reinforce biological adhesion under shear flow. Phys. Rev. E97 (2018), 042407.10.1103/PhysRevE.97.042407Suche in Google Scholar PubMed

[8] A. V. Belyaev, J. L. Dunster, J. M. Gibbins, M. A. Panteleev, and V. Volpert, Modelling thrombosis in silico: frontiers, challenges, unresolved problems and milestones. Physics of Life Reviews26–27 (2018), 57–95.10.1016/j.plrev.2018.02.005Suche in Google Scholar PubMed

[9] N. Bessonov, E. Babushkina, S. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, and V. Volpert, Numerical simulation of blood flows with non-uniform distribution of erythrocytes and platelets. Russian J. Numer. Anal. Math. Modelling28 (2013), 443–458.10.1515/rnam-2013-0024Suche in Google Scholar

[10] M. Bušík and I. Cimrák, The calibration of fluid-object interaction in immersed boundary method. EPJ Web of Conferences143 (2017), 02013.10.1051/epjconf/201714302013Suche in Google Scholar

[11] J. R. Byrnes and A. S. Wolberg, Red blood cells in thrombosis. Blood130 (2017), No. 16, 1795–1799.10.1182/blood-2017-03-745349Suche in Google Scholar PubMed PubMed Central

[12] A. Celi, G. Merrill-Skoloff, P. Gross, S. Falati, D. S. Sim, R. Flaumenhaft, B. C. Furie, and B. Furie, Thrombus formation: direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscope. J. Thrombosis Haemostasis1 (2002), 60–68.10.1046/j.1538-7836.2003.t01-1-00033.xSuche in Google Scholar PubMed

[13] H. Chen and A. Alexander-Katz, Structure and dynamics of blood-clotting-inspired polymer–colloid composites. Soft Matter9 (2013), 10381.10.1039/c3sm52264dSuche in Google Scholar

[14] S. Chen and C. D. Doolen, Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics30 (1998), 329–364.10.1146/annurev.fluid.30.1.329Suche in Google Scholar

[15] I. Cimrák, M. Gusenbauer, and I. Jančigová, An ESPResSo implementation of elastic objects immersed in a fluid. Computer Physics Commun. 185 (2014), No. 3, 900–907.10.1016/j.cpc.2013.12.013Suche in Google Scholar

[16] I. Cimrák and M. Gusenbauer and T. Schrefl, Modelling and simulation of processes in microfluidic devices for biomedical applications. Computers Math. Appl. 64 (2012), No. 3, 278–288.10.1016/j.camwa.2012.01.062Suche in Google Scholar

[17] C. Denis, N. Methia, P. S. Frenette, H. Rayburn, M. Ullman-Culleré, R. O. Hynes, and D. D. Wagner, A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc. Nat. Acad. Sci. USA95 (1998), 9524–9529.10.1073/pnas.95.16.9524Suche in Google Scholar PubMed PubMed Central

[18] B. Dunweg and A. J. C. Ladd, Lattice Boltzmann Simulations of Soft Matter Systems. In: Adv. in Polymer Sci., Springer, Berlin–Heidelberg, 2008. %, 1–78.Suche in Google Scholar

[19] T. L. Fabry, Mechanism of erythrocyte aggregation and sedimentation. Blood70 (1987), No. 5, 1572–1576.10.1182/blood.V70.5.1572.1572Suche in Google Scholar

[20] D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Nat. Acad. Sci. USA108 (2011), No. 29, 11772–11777.10.1073/pnas.1101210108Suche in Google Scholar PubMed PubMed Central

[21] D. A. Fedosov, M. Dao, G. E. Karniadakis, and S. Suresh, Computational bio-rheology of human blood flow in health and disease. Ann. Biomed. Eng. 42 (2014), 368–387.10.1007/s10439-013-0922-3Suche in Google Scholar PubMed PubMed Central

[22] M. H. Flamm, T. V. Colace, M. S. Chatterjee, H. Jing, S. Zhou, D. Jaeger, L. F. Brass, T. Sinno, and S. L. Diamond, Multiscale prediction of patient-specific platelet function under flow. Blood120 (2012), 190–198.10.1182/blood-2011-10-388140Suche in Google Scholar PubMed PubMed Central

[23] A. L. Fogelson, Y. H. Hussain, and K. Leiderman, Blood clot formation under flow: the importance of factor XI depends strongly on platelet count. Biophys. J. 102 (2012), 10–18.10.1016/j.bpj.2011.10.048Suche in Google Scholar PubMed PubMed Central

[24] H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W. P. Wong, and T. A. Springer, Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nature Communications8 (2017), 324.10.1038/s41467-017-00230-2Suche in Google Scholar PubMed PubMed Central

[25] Y. C. Fung, Biomechanics: Circulation. Second edition. Springer-Verlag, New York, 1997.10.1007/978-1-4757-2696-1Suche in Google Scholar

[26] B. Furie and B. C. Furie, Thrombus formation in vivo. J. Clin. Invest. 115 (2005), 3355–3362.10.1172/JCI26987Suche in Google Scholar PubMed PubMed Central

[27] T. M. Geislinger and T. Franke, Hydrodynamic lift of vesicles and red blood cells in flow–from Fahraeus & Lindqvist to microfluidic cell sorting. Advances in Colloid and Interface Science208 (2014), 161–176.10.1016/j.cis.2014.03.002Suche in Google Scholar PubMed

[28] G. Giupponi, G. De Fabritiis, and Peter V. Coveney, Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. J. Chemical Physics126 (2007), No. 15, 154903.10.1063/1.2720385Suche in Google Scholar PubMed

[29] S. P. Jackson, W. S. Nesbitt, and E. Westein, Dynamics of platelet thrombus formation, J. Thrombosis and Haemostasis7 (2009), No. 1, 17–20.10.1111/j.1538-7836.2009.03401.xSuche in Google Scholar PubMed

[30] J. Kim, C.-Zh. Zhang, X. Zhang, and T. A. Springer, A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature466 (2010), 992–995.10.1038/nature09295Suche in Google Scholar PubMed PubMed Central

[31] M. J. Maxwell, E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson, Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood109 (2007), 566–576.10.1182/blood-2006-07-028282Suche in Google Scholar PubMed

[32] N. A. Mody and M. R. King, Platelet adhesive dynamics. Part I: characterization of platelet hydrodynamic collisions and wall effects, Biophys. J. 95 (2008), 2539–2555.10.1529/biophysj.107.127670Suche in Google Scholar PubMed PubMed Central

[33] N. A. Mody and M. R. King, Platelet adhesive dynamics. Part II: high shear-induced transient aggregation via GPIba-vWF-GPIba bridging. Biophys. J. 95 (2008), 2556–2574.10.1529/biophysj.107.128520Suche in Google Scholar PubMed PubMed Central

[34] D. Mori, K. Yano, K. Tsubota, T. Ishikawa, S. Wada, and T. Yamaguchi, Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor. Thromb. Haemost. 99 (2008), 108–115.10.1160/TH07-08-0490Suche in Google Scholar PubMed

[35] L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B. Chopard, and A. G. Hoekstra, Parallel performance of an IB-LBM suspension simulation framework. J. Comput. Sci. 9 (2015), 45–50.10.1016/j.jocs.2015.04.006Suche in Google Scholar

[36] J. P. Müller, S. Mielke, A. Löf, T. Obser, C. Beer, L. K. Bruetzel, D. A. Pippig, W. Vanderlinden, J. Lipfert, R. Schneppenheim, and M. Benoit, Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction. Proc. Nat. Acad. Sci. 113 (2016), No. 5, 1208–1213.10.1073/pnas.1516214113Suche in Google Scholar PubMed PubMed Central

[37] L. Novák, Ha. Deckmyn, S. Damjanovich, and J. Hársfalvi, Shear-dependent morphology of von Willebrand factor bound to immobilized collagen. Blood99 (2002), No. 6, 2070–2076.10.1182/blood.V99.6.2070Suche in Google Scholar

[38] I. V. Pivkin, P. D. Richardson, and G. Karniadakis, Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Nat. Acad. Sci. 103 (2006), No. 46, 17164–17169.10.1073/pnas.0608546103Suche in Google Scholar PubMed PubMed Central

[39] C. Pozrikidis, Orbiting motion of a freely suspended spheroid near a plane wall. J. Fluid Mech. 541 (2005), 105–114.10.1017/S0022112005006117Suche in Google Scholar

[40] C. Pozrikidis, Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568 (2005), 161–172.10.1017/S002211200600156XSuche in Google Scholar

[41] K. Rack, V. Huck, M. Hoore, D. Fedosov, S. Schneider, and G. Gompper, Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Sci. Reports7 (2017), 14278.10.1038/s41598-017-14346-4Suche in Google Scholar PubMed PubMed Central

[42] D. A. Reasor, J. R. Clausen, and C. K. Aidun, Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Int. J. Numer. Methods Fluids68 (2012), No. 6, 767–781.10.1002/fld.2534Suche in Google Scholar

[43] S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Nat. Acad. Sci. 104 (2007), 7899–7903.10.1073/pnas.0608422104Suche in Google Scholar

[44] R. Skalak, S. R. Keller, and T. W. Secomb, Mechanics of blood flow. J. Biomech. Eng. 103 (1981), 102–115.10.1115/1.3138253Suche in Google Scholar

[45] H. Slayter, J. Loscalzo, P. Bockenstedt, and R. I. Handin, Native conformation of human von Willebrand protein. Analysis by electron microscopy and quasi-elastic light scattering. J. Biological Chemistry260 (1985), No. 14, 8559–8563.10.1016/S0021-9258(17)39509-1Suche in Google Scholar

[46] A. P. Spann, J. E. Campbell, S. R. Fitzgibbon, A. Rodriguez, A. P. Cap, L. H. Blackbourne, and E. S. G. Shaqfeh, The effect of hematocrit on platelet adhesion: experiments and simulations. Biophys. J. 111 (2016), 577–588.10.1016/j.bpj.2016.06.024Suche in Google Scholar PubMed PubMed Central

[47] T. A. Springer, Von Willebrand factor, Jedi knight of the bloodstream. Blood124 (2014), No. 9, 1412–1425.10.1182/blood-2014-05-378638Suche in Google Scholar PubMed PubMed Central

[48] T. J. Stalker, E. A. Traxler, J. Wu, K. M. Wannemacher, S. L. Cermignano, R. Voronov, S. L. Diamond, and L. F. Brass, Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood121 (2013), 1875–1885.10.1182/blood-2012-09-457739Suche in Google Scholar PubMed PubMed Central

[49] F. Storti, T. H. S. van Kempen, and F. N. van de Vosse, A continuum model for platelet plug formation and growth. Int. J. Numer. Meth. Biomed. Eng. 30 (2014), 634–658.10.1002/cnm.2623Suche in Google Scholar PubMed

[50] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Oxford University Press, USA, 2001.Suche in Google Scholar

[51] A. A. Tokarev, A. A. Butylin, and F. I. Ataullakhanov, Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100 (2011), 799–808.10.1016/j.bpj.2010.12.3740Suche in Google Scholar PubMed PubMed Central

[52] A. A. Tokarev, A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov, Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101 (2011), 1835–1843.10.1016/j.bpj.2011.08.031Suche in Google Scholar PubMed PubMed Central

[53] A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, and V. Volpert. Modelling of thrombus growth in flow with a DPD-PDE method. J. Theor. Biology337 (2013), 30–41.10.1016/j.jtbi.2013.07.023Suche in Google Scholar

[54] R. Tran-Son-Tay, S. P. Sutera, and P. R. Rao, Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46 (1984), No. 1, 65–72.10.1016/S0006-3495(84)83999-5Suche in Google Scholar

[55] W. Wang, N. A. Mody, and M. R. King, Multiscale model of platelet translocation and collision. J. Comput Phys. 244 (2013), 223–235.10.1016/j.jcp.2012.08.014Suche in Google Scholar PubMed PubMed Central

[56] W.-T. Wu, M. A. Jamiolkowski, W. R. Wagner, N. Aubry, M. Massoudi, and J. F. Antak, Multi-constituent simulation of thrombus deposition. Sci. Reports7 (2017), 42720.10.1038/srep42720Suche in Google Scholar PubMed PubMed Central

[57] Z. Xu, N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, and M. Alber, Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter5 (2009), 769–779.10.1039/B812429ASuche in Google Scholar

[58] A. Yazdani, H. Li, J. D. Humphrey, and G. E. Karniadakis, A general shear-dependent model for thrombus formation. PLOS Computational Biology13 (2017), No. 1, e1005291.10.1371/journal.pcbi.1005291Suche in Google Scholar PubMed PubMed Central

[59] H. Zhao and E. S. G. Shaqfeh, Shear-induced platelet margination in a microchannel. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83 (2011), 061924.10.1103/PhysRevE.83.061924Suche in Google Scholar PubMed

Received: 2019-05-14
Accepted: 2019-08-22
Published Online: 2019-11-28
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2019-0020/html
Button zum nach oben scrollen