Abstract
There has been a significant amount of attention directed towards understanding brain development, shedding light on the underlying mechanisms. The proliferation and differentiation of brain stem cells have been a key focus. The process of neurolation occurs during the early stages of embryonic development, leading to the formation of the neural tube, a hollow nerve cord that gives rise to the central nervous system (CNS). There is a growing emphasis on the fluid-filled space inside the developing CNS and the potential role of cerebrospinal fluid (CSF) in brain development. The flow of CSF near the germinal epithelium significantly impacts the proliferation of cells in the cerebral cortex. CSF provides crucial support to the germinal epithelium, influencing the growth and differentiation of neural stem cells. It achieves this by releasing growth factors, cytokines, and morphogens that control the proliferation, survival, and migration of neuroepithelium. During development, the concentration of proteins in the CSF is notably higher compared to that in adults. Studies have indicated that removing CSF from the brain’s ventricles during development causes an increase in neural cell deaths and a reduction in neural cell proliferation, ultimately leading to a thinner cerebral cortex. Additionally, many researches demonstrate that the composition of the CSF is essential for maintaining germinal matrix function and output, highlighting the critical role of CSF in brain development. It is concluded that CSF impacts the proliferation and differentiation of neural stem cells, which in turn plays a pivotal role in brain development.
Acknowledgments
We would like to thank to the research assistant of the university of Guilan for support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: FM and ZS Both wrote the manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
Alonso, M.I., Lamus, F., Carnicero, E., Moro, J.A., De la Mano, A., Fernández, J.M., Desmond, M.E., and Gato, A. (2017). Embryonic cerebrospinal fluid increases neurogenic activity in the brain ventricular-subventricular zone of adult mice. Front. Neuroanat. 11: 124, https://doi.org/10.3389/fnana.2017.00124.Suche in Google Scholar
Andreu-Agullo, C., Morante-Redolat, J.M., Delgado, A.C., and Fariñas, I. (2009). Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat. Neurosci. 12: 1514–1523, https://doi.org/10.1038/nn.2437.Suche in Google Scholar
Arbeille, E., Reynaud, F., Sanyas, I., Bozon, M., Kindbeiter, K., Causeret, F., Pierani, A., Falk, J., Moret, F., and Castellani, V. (2015). Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat. Commun. 6: 6366, https://doi.org/10.1038/ncomms7366.Suche in Google Scholar
Bátiz, L.F., Castro, M.A., Burgos, P.V., Velásquez, Z.D., Muñoz, R.I., Lafourcade, C.A., Troncoso-Escudero, P., and Wyneken, U. (2016). Exosomes as novel regulators of adult neurogenic niches. Front. Cell Neurosci. 9: 501, https://doi.org/10.3389/fncel.2015.00501.Suche in Google Scholar
Bromley, B., Frigoletto Jr, F.D., and Benacerraf, B.R. (1991). Mild fetal lateral cerebral ventriculomegaly: clinical course and outcome. Am. J. Obstet. Gynecol. 16: 863–867, https://doi.org/10.1016/0002-9378(91)90530-5.Suche in Google Scholar
Bueno, D., Parvas, M., Nabiuni, M., and Miyan, J. (2021). Embryonic cerebrospinal fluid formation and regulation. Semin. Cell Dev. Biol. 110: 104–112.Suche in Google Scholar
Castañeyra-Ruiz, L., González-Marrero, I., Hernández-Abad, L.G., Carmona-Calero, E.M., Pardo, M.R., Baz-Davila, R., Lee, S., Muhonen, M., Borges, R., and Castañeyra-Perdomo, A. (2022). AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol. Commun. 10: 41, https://doi.org/10.1186/s40478-022-01345-4.Suche in Google Scholar
Clarke, L. and van der Kooy, D. (2011). The adult mouse dentate gyrus contains populations of committed progenitor cells that are distinct from subependymal zone neural stem cells. Stem cells 29: 1448–1458, https://doi.org/10.1002/stem.692.Suche in Google Scholar
Daems, M., Peacock, H.M., and Jones, E.A. (2020). Fluid flow as a driver of embryonic morphogenesis. Development 147: 185579, https://doi.org/10.1242/dev.185579.Suche in Google Scholar
Damkier, H.H., Brown, P.D., and Praetorius, J. (2013). Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93: 1847–1892, https://doi.org/10.1152/physrev.00004.2013.Suche in Google Scholar
Dani, N., Herbst, R.H., McCabe, C., Green, G.S., Kaiser, K., Head, J.P., Cui, J., Shipley, F.B., Jang, A., Dionne, D., et al.. (2021). A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184: 3056–3074, https://doi.org/10.1016/j.cell.2021.04.003.Suche in Google Scholar
Desmond, M.E., Knepper, J.E., Dibenedetto, A.J., Malaugh, E., Callejo, S., Carretero, R., Alonso, M.I., and Gato, A. (2014). Focal adhesion kinase as a mechanotransducer during rapid brain growth of the chick embryo. Int. J. Dev. Biol. 58: 35–43, https://doi.org/10.1387/ijdb.130305md.Suche in Google Scholar
Faissner, A. and Reinhard, J. (2015). The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 63: 1330–1349, https://doi.org/10.1002/glia.22839.Suche in Google Scholar
Fame, R.M., Cortés‐Campos, C., and Sive, H.L. (2020). Brain ventricular system and cerebrospinal fluid development and function: light at the end of the tube: a primer with latest insights. BioEssays 42: 1900186, https://doi.org/10.1002/bies.201900186.Suche in Google Scholar
Fame, R.M. and Lehtinen, M.K. (2020). Emergence and developmental roles of the cerebrospinal fluid system. Dev. Cell 52: 261–275, https://doi.org/10.1016/j.devcel.2020.01.027.Suche in Google Scholar
Fame, R.M., Shannon, M.L., Chau, K.F., Head, J.P., and Lehtinen, M.K. (2019). A concerted metabolic shift in early forebrain alters the CSF proteome and depends on MYC downregulation for mitochondrial maturation. Development 146: 182857, https://doi.org/10.1242/dev.182857.Suche in Google Scholar
Gato, A., Alonso, M.I., Martín, C., Carnicero, E., Moro, J.A., De la Mano, A., Fernández, J.M., Lamus, F., and Desmond, M.E. (2014). Embryonic cerebrospinal fluid in brain development: neural progenitor control. Croat. Med. J. 55: 299–305, https://doi.org/10.3325/cmj.2014.55.299.Suche in Google Scholar
Gato, A. and Desmond, M.E. (2009). Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev. Biol. 327: 263–272, https://doi.org/10.1016/j.ydbio.2008.12.029.Suche in Google Scholar
Gato, Á., Moro, J., Alonso, M., Bueno, D., De La Mano, A., and Martin, C. (2005). Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 284: 475–484, https://doi.org/10.1002/ar.a.20185.Suche in Google Scholar
Ghersi-Egea, J.F., Strazielle, N., Catala, M., Silva-Vargas, V., Doetsch, F., and Engelhardt, B. (2018). Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 135: 337–361, https://doi.org/10.1007/s00401-018-1807-1.Suche in Google Scholar
Guerra, M., Gonzalez, C., Caprile, T., Jara, M., Vio, K., Munoz, R., Rodríguez, S., and Rodríguez, E.M. (2015). Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front. Cell Neurosci. 9: 480, https://doi.org/10.3389/fncel.2015.00480.Suche in Google Scholar
Hardan, A.Y., Minshew, N.J., Mallikarjuhn, M., and Keshavan, M.S. (2001). Brain volume in autism. J. Child Neurol. 16: 421–424, https://doi.org/10.1177/088307380101600607.Suche in Google Scholar
Janelidze, S., Stomrud, E., Smith, R., Palmqvist, S., Mattsson, N., Airey, D.C., Proctor, N.K., Chai, X., Shcherbinin, S., Sims, J.R., et al.. (2020). Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 11: 1683, https://doi.org/10.1038/s41467-020-15436-0.Suche in Google Scholar
Kaiser, K., Gyllborg, D., Procházka, J., Salašová, A., Kompaníková, P., Molina, F.L., Laguna-Goya, R., Radaszkiewicz, T., Harnoš, J., Procházková, M., et al.. (2019). WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat. Commun. 10: 1498, https://doi.org/10.1038/s41467-019-09298-4.Suche in Google Scholar
Lamus, F., Martín, C., Carnicero, E., Moro, J.A., Fernández, J.M.F., Mano, A., Gato, Á., and Alonso, M.I. (2020). FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: the involvement of embryonic cerebrospinal fluid. Dev. Dyn. 249: 141–153, https://doi.org/10.1002/dvdy.135.Suche in Google Scholar
Lim, D.A. and Alvarez-Buylla, A. (2014). Adult neural stem cells stake their ground. Trends Neurosci. 37: 563–571, https://doi.org/10.1016/j.tins.2014.08.006.Suche in Google Scholar
Lun, M.P., Monuki, E.S., and Lehtinen, M.K. (2015). Development and functions of the choroid plexus–cerebrospinal fluid system. Nat. Rev. Neurosci. 16: 445–457, https://doi.org/10.1038/nrn3921.Suche in Google Scholar
Madrigal, M., Martín, P., Lamus, F., Fernandez, J., Gato, A., and Alonso, M. (2023). Embryonic cerebrospinal fluid influence in the subependymal neurogenic niche in adult mouse hippocampus. Tissue Cell 82: 102120, https://doi.org/10.1016/j.tice.2023.102120.Suche in Google Scholar
Martin, C., Alonso, M., Santiago, C., Moro, J., De la Mano, A., Carretero, R., and Gato, A. (2009). Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int. J. Dev. Neurosci. 27: 733–740, https://doi.org/10.1016/j.ijdevneu.2009.06.002.Suche in Google Scholar
Martín, C., Bueno, D., Alonso, M., Moro, J., Callejo, S., Parada, C., Martin, P., Carnicero, E., and Gato, A. (2006). FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells. Dev. Biol. 297: 402–416, https://doi.org/10.1016/j.ydbio.2006.05.010.Suche in Google Scholar
Mashayekhi, F., Azari, M., Moghadam, L.M., Yazdankhah, M., Naji, M., and Salehi, Z. (2009). Changes in cerebrospinal fluid nerve growth factor levels during chick embryonic development. J. Clin. Neurosci. 16: 1334–1337, https://doi.org/10.1016/j.jocn.2009.03.023.Suche in Google Scholar
Mashayekhi, F., Draper, C.E., Bannister, C.M., Pourghasem, M., Owen‐Lynch, P.J., and Miyan, J.A. (2002). Deficient cortical development in the hydrocephalic Texas (H‐Tx) rat: a role for CSF. Brain 125: 1859–1874, https://doi.org/10.1093/brain/awf182.Suche in Google Scholar
Mashayekhi, F. and Gholizadeh, L. (2011). Administration of anti-c-kit antibody into the cerebrospinal fluid leads to increased cell death in the developing cerebral cortex. Saudi J. Biol. Sci. 18: 261–266, https://doi.org/10.1016/j.sjbs.2011.01.006.Suche in Google Scholar
Mashayekhi, F. and Salehi, Z. (2005). Expression of nerve growth factor in cerebrospinal fluid of congenital hydrocephalic and normal children. Eur. J. Neurol. 12: 632–637, https://doi.org/10.1111/j.1468-1331.2005.01044.x.Suche in Google Scholar
Mashayekhi, F. and Salehi, Z. (2006). The importance of cerebrospinal fluid on neural cell proliferation in developing chick cerebral cortex. E Eur. J. Neurol. 13: 266–272, https://doi.org/10.1111/j.1468-1331.2006.01208.x.Suche in Google Scholar
Mashayekhi, F. and Salehi, Z. (2007). Infusion of anti‐nerve growth factor into the cisternum magnum of chick embryo leads to decrease cell production in the cerebral cortical germinal epithelium. Eur. J. Neurol. 14: 181–186, https://doi.org/10.1111/j.1468-1331.2006.01612.x.Suche in Google Scholar
Miyan, J., Cains, S., Larcombe, S., Naz, N., Jimenez, A.R., Bueno, D., and Gato, A. (2020). Subarachnoid cerebrospinal fluid is essential for normal development of the cerebral cortex. Semin. Cell Dev. Biol. 102: 28–39, https://doi.org/10.1016/j.semcdb.2019.11.011.Suche in Google Scholar
Miyan, J.A., Nabiyouni, M., and Zendah, M. (2003). Development of the brain: a vital role for cerebrospinal fluid. Can. J. Physiol. Pharmacol. 81: 317–328, https://doi.org/10.1139/y03-027.Suche in Google Scholar
Miyan, J.A., Zendah, M., Mashayekhi, F., and Owen-Lynch, P.J. (2006). Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development. Cerebrospinal Fluid Res. 3: 1–7, https://doi.org/10.1186/1743-8454-3-2.Suche in Google Scholar
Obernier, K. and Alvarez-Buylla, A. (2019). Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146: 156059, https://doi.org/10.1242/dev.156059.Suche in Google Scholar
Olstad, E.W., Ringers, C., Hansen, J.N., Wens, A., Brandt, C., Wachten, D., Yaksi, E., and Jurisch-Yaksi, N. (2019). Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol. 29: 229–241. e226, https://doi.org/10.1016/j.cub.2018.11.059.Suche in Google Scholar
Owen‐Lynch, P.J., Draper, C.E., Mashayekhi, F., Bannister, C.M., and Miyan, J.A. (2003). Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain 126: 623–631, https://doi.org/10.1093/brain/awg058.Suche in Google Scholar
Petrik, D., Myoga, M.H., Grade, S., Gerkau, N.J., Pusch, M., Rose, C.R., Grothe, B., and Götz, M. (2018). Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner. Cell Stem Cell 22: 865–878. e868, https://doi.org/10.1016/j.stem.2018.04.016.Suche in Google Scholar
Radoszkiewicz, K., Bzinkowska, A., Chodkowska, M., Rybkowska, P., Sypecka, M., Zembrzuska-Kaska, I., and Sarnowska, A. (2024). Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front. Neurosci. 17: 1332751, https://doi.org/10.3389/fnins.2023.1332751.Suche in Google Scholar
Raghunathan, R., Turajane, K., and Wong, L.C. (2022). Biomarkers in neurodegenerative diseases: proteomics spotlight on ALS and Parkinson’s disease. Int. J. Mol. Sci. 23: 9299, https://doi.org/10.3390/ijms23169299.Suche in Google Scholar
Rodríguez, S. and Caprile, T. (2001). Functional aspects of the subcommissural organ‐Reissner’s fiber complex with emphasis in the clearance of brain monoamines. Microsc. Res. Tech. 52: 564–572, https://doi.org/10.1002/1097-0029(20010301)52:5<564::aid-jemt1041>3.0.co;2-7.10.1002/1097-0029(20010301)52:5<564::AID-JEMT1041>3.0.CO;2-7Suche in Google Scholar
Salehi, Z. and Mashayekhi, F. (2006). The role of cerebrospinal fluid on neural cell survival in the developing chick cerebral cortex: an in vivo study. Eur. J. Neurol. 13: 760–764, https://doi.org/10.1111/j.1468-1331.2006.01358.x.Suche in Google Scholar
Salehi, Z., Mashayekhi, F., Naji, M., and Pandamooz, S. (2009). Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J. Clin. Neurosci. 16: 950–953, https://doi.org/10.1016/j.jocn.2008.09.018.Suche in Google Scholar
Sawamoto, K., Wichterle, H., Gonzalez-Perez, O., Cholfin, J.A., Yamada, M., Spassky, N., Murcia, N.S., Garcia-Verdugo, J.M., Marin, O., Rubenstein, J.L., et al.. (2006). New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311: 629–632, https://doi.org/10.1126/science.1119133.Suche in Google Scholar
Seelan, R.S., Pisano, M.M., and Greene, R.M. (2022). MicroRNAs as biomarkers for birth defects. MicroRNA 11: 2–11, https://doi.org/10.2174/2211536611666220215123423.Suche in Google Scholar
Silva-Vargas, V., Maldonado-Soto, A.R., Mizrak, D., Codega, P., and Doetsch, F. (2016). Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19: 643–652, https://doi.org/10.1016/j.stem.2016.06.013.Suche in Google Scholar
Spector, R., Snodgrass, S.R., and Johanson, C.E. (2015). A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp. Neurol. 273: 57–68, https://doi.org/10.1016/j.expneurol.2015.07.027.Suche in Google Scholar
Thouvenin, O., Keiser, L., Cantaut-Belarif, Y., Carbo-Tano, M., Verweij, F., Jurisch-Yaksi, N., Bardet, P.L., Van Niel, G., Gallaire, F., and Wyart, C. (2020). Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. Elife 9: e47699, https://doi.org/10.7554/elife.47699.Suche in Google Scholar
Vio, K., Rodríguez, S., Yulis, C.R., Oliver, C., and Rodríguez, E.M. (2008). The subcommissural organ of the rat secretes Reissner’s fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments. Cerebrospinal Fluid Res. 5: 1–14, https://doi.org/10.1186/1743-8454-5-3.Suche in Google Scholar
Xu, Z. and Xu, R. (2024). Current potential diagnostic biomarkers of amyotrophic lateral sclerosis. Rev. Neurosci. 35: 917–993, https://doi.org/10.1515/revneuro-2024-0037.Suche in Google Scholar
Zappaterra, M.W. and Lehtinen, M.K. (2012). The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell. Mol. Life Sci. 69: 2863–2878, https://doi.org/10.1007/s00018-012-0957-x.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms
- Recognition and classification of facial expression using artificial intelligence as a key of early detection in neurological disorders
- The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders
- The interplay between gut microbiota composition and dementia
- The essential role of cerebrospinal fluid in the brain; a comprehensive review
- Advances in repetitive transcranial magnetic stimulation in the treatment of treatment-resistant depression: a comprehensive review
Artikel in diesem Heft
- Frontmatter
- Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms
- Recognition and classification of facial expression using artificial intelligence as a key of early detection in neurological disorders
- The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders
- The interplay between gut microbiota composition and dementia
- The essential role of cerebrospinal fluid in the brain; a comprehensive review
- Advances in repetitive transcranial magnetic stimulation in the treatment of treatment-resistant depression: a comprehensive review