Startseite The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders

  • Pantea Allami , Niloufar Yazdanpanah und Nima Rezaei EMAIL logo
Veröffentlicht/Copyright: 24. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer’s disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.


Corresponding author: Nima Rezaei, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran; Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Children’s Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran 1416634793, Tehran, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: P.A., N.Y., and N.R. conceptualized the study. P.A. and N.Y. conducted database search and drafting the initial draft. P.A., N.Y., and N.R. prepared the final draft. N.R. supervised the project and critically appraised the manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission. The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Grammarly and Quillbot were adopted minorly in some parts to improve the language.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

Ahnaou, A., Moechars, D., Raeymaekers, L., Biermans, R., Manyakov, N., Bottelbergs, A., Wintmolders, C., Van Kolen, K., Van De Casteele, T., Kemp, J., et al.. (2017). Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Sci. Rep. 7: 14189, https://doi.org/10.1038/s41598-017-13839-6.Suche in Google Scholar

Albrecht, A., Segal, M., and Stork, O. (2022). Allostatic gene regulation of inhibitory synaptic factors in the rat ventral hippocampus in a juvenile/adult stress model of psychopathology. Eur. J. Neurosci. 55: 2142–2153, https://doi.org/10.1111/ejn.15091.Suche in Google Scholar

Ali, A.B., Islam, A., and Constanti, A. (2023). The fate of interneurons, GABAA receptor sub-types and perineuronal nets in Alzheimer’s disease. Brain Pathol 33: e13129, https://doi.org/10.1111/bpa.13129.Suche in Google Scholar

Allen, K. and Monyer, H. (2015). Interneuron control of hippocampal oscillations. Curr. Opin. Neurobiol. 31: 81–87, https://doi.org/10.1016/j.conb.2014.08.016.Suche in Google Scholar

Amaya, K.A., Teboul, E., Weiss, G.L., Antonoudiou, P., and Maguire, J.L. (2024). Basolateral amygdala parvalbumin interneurons coordinate oscillations to drive reward behaviors. Curr. Biol. 34: 1561–1568. e1564, https://doi.org/10.1016/j.cub.2024.02.041.Suche in Google Scholar

Andoh, M., Ikegaya, Y., and Koyama, R. (2020). Microglia in animal models of autism spectrum disorders. Prog. Mol. Biol. Transl. Sci. 173: 239–273, https://doi.org/10.1016/bs.pmbts.2020.04.012.Suche in Google Scholar

Arroyo-García, L.E., Bachiller, S., Ruiz, R., Boza-Serrano, A., Rodríguez-Moreno, A., Deierborg, T., Andrade-Talavera, Y., and Fisahn, A. (2023). Targeting galectin-3 to counteract spike-phase uncoupling of fast-spiking interneurons to gamma oscillations in Alzheimer’s disease. Transl. Neurodegener. 12: 6, https://doi.org/10.1186/s40035-023-00338-0.Suche in Google Scholar

Assaf, F. and Schiller, Y. (2016). The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons. J. Neurophysiol. 116: 1694–1704, https://doi.org/10.1152/jn.00744.2015.Suche in Google Scholar

Bakkour, N., Samp, J., Akhras, K., El Hammi, E., Soussi, I., Zahra, F., Duru, G., Kooli, A., and Toumi, M. (2014). Systematic review of appropriate cognitive assessment instruments used in clinical trials of schizophrenia, major depressive disorder and bipolar disorder. Psychiatr. Res 216: 291–302, https://doi.org/10.1016/j.psychres.2014.02.014.Suche in Google Scholar

Bannister, A.P. (2005). Inter-and intra-laminar connections of pyramidal cells in the neocortex. Neurosci. Res. 53: 95–103, https://doi.org/10.1016/j.neures.2005.06.019.Suche in Google Scholar

Barron, H., Hafizi, S., Andreazza, A.C., and Mizrahi, R. (2017). Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int. J. Mol. Sci. 18: 651, https://doi.org/10.3390/ijms18030651.Suche in Google Scholar

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8: 45–56, https://doi.org/10.1038/nrn2044.Suche in Google Scholar

Bassett, D.S. and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20: 353–364, https://doi.org/10.1038/nn.4502.Suche in Google Scholar

Batista-Brito, R., Majumdar, A., Nuno, A., Ward, C., Barnes, C., Nikouei, K., Vinck, M., and Cardin, J.A. (2023). Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Mol. Psychiatr.: 1–11, https://doi.org/10.1038/s41380-023-02066-3.Suche in Google Scholar

Becher, B., Spath, S., and Goverman, J. (2017). Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17: 49–59, https://doi.org/10.1038/nri.2016.123.Suche in Google Scholar

Behrens, M.M. and Sejnowski, T.J. (2009). Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology 57: 193–200, https://doi.org/10.1016/j.neuropharm.2009.06.002.Suche in Google Scholar

Behrens, M.M., Ali, S.S., Dao, D.N., Lucero, J., Shekhtman, G., Quick, K.L., and Dugan, L.L. (2007). Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318: 1645–1647, https://doi.org/10.1126/science.1148045.Suche in Google Scholar

Behrens, M.M., Ali, S.S., and Dugan, L.L. (2008). Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J. Neurosci. 28: 13957–13966, https://doi.org/10.1523/jneurosci.4457-08.2008.Suche in Google Scholar

Ben-Ari, Y., Khalilov, I., Represa, A., and Gozlan, H. (2004). Interneurons set the tune of developing networks. Trends Neurosci. 27: 422–427, https://doi.org/10.1016/j.tins.2004.05.002.Suche in Google Scholar

Beneyto, M., Abbott, A., Hashimoto, T., and Lewis, D.A. (2011). Lamina-specific alterations in cortical GABAA receptor subunit expression in schizophrenia. Cereb. Cortex 21: 999–1011, https://doi.org/10.1093/cercor/bhq169.Suche in Google Scholar

Berryhill, M.E., Peterson, D., Jones, K., and Tanoue, R. (2012). Cognitive disorders. In: Ramachandran, V.S. (Ed.). Encyclopedia of human behavior, 2nd ed., San Diego, Academic Press. pp. 536–542.10.1016/B978-0-12-375000-6.00096-3Suche in Google Scholar

Bhatti, D.L., Medrihan, L., Chen, M.X., Jin, J., McCabe, K.A., Wang, W., Azevedo, E.P., Ledo, J.H., and Kim, Y. (2022). Molecular and cellular adaptations in hippocampal parvalbumin neurons mediate behavioral responses to chronic social stress. Front. Mol. Neurosci. 15: 898851, https://doi.org/10.3389/fnmol.2022.898851.Suche in Google Scholar

Bianciardi, B. and Uhlhaas, P.J. (2021). Do NMDA-R antagonists re-create patterns of spontaneous gamma-band activity in schizophrenia? A systematic review and perspective. Neurosci. Biobehav. Rev. 124: 308–323, https://doi.org/10.1016/j.neubiorev.2021.02.005.Suche in Google Scholar

Bock, D.D., Lee, W.-C.A., Kerlin, A.M., Andermann, M.L., Hood, G., Wetzel, A.W., Yurgenson, S., Soucy, E.R., Kim, H.S., and Reid, R.C. (2011). Network anatomy and in vivo physiology of visual cortical neurons. Nature 471: 177–182, https://doi.org/10.1038/nature09802.Suche in Google Scholar

Bousman, C., Cropley, V., Klauser, P., Hess, J., Pereira, A., Idrizi, R., Bruggemann, J., Mostaid, M., Lenroot, R., Weickert, T., et al.. (2018). Neuregulin-1 (NRG1) polymorphisms linked with psychosis transition are associated with enlarged lateral ventricles and white matter disruption in schizophrenia. Psychol. Med. 48: 801–809, https://doi.org/10.1017/s0033291717002173.Suche in Google Scholar

Bowie, C.R. and Harvey, P.D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat. 2: 531–536, https://doi.org/10.2147/nedt.2006.2.4.531.Suche in Google Scholar

Boza-Serrano, A., Ruiz, R., Sanchez-Varo, R., García-Revilla, J., Yang, Y., Jimenez-Ferrer, I., Paulus, A., Wennström, M., Vilalta, A., Allendorf, D., et al.. (2019). Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol 138: 251–273, https://doi.org/10.1007/s00401-019-02013-z.Suche in Google Scholar

Bridi, M.S., Park, S.M., and Huang, S. (2017). Developmental disruption of GABAAR-meditated inhibition in Cntnap2 KO mice. ENeuro 4, https://doi.org/10.1523/eneuro.0162-17.2017.Suche in Google Scholar

Burguillos, M.A., Svensson, M., Schulte, T., Boza-Serrano, A., Garcia-Quintanilla, A., Kavanagh, E., Santiago, M., Viceconte, N., Oliva-Martin, M.J., Osman, A.M., et al.. (2015). Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 10: 1626–1638, https://doi.org/10.1016/j.celrep.2015.02.012.Suche in Google Scholar

Bush, A.I. (2003). The metallobiology of Alzheimer’s disease. Trends Neurosci. 26: 207–214, https://doi.org/10.1016/s0166-2236(03)00067-5.Suche in Google Scholar

Caillard, O., Moreno, H., Schwaller, B., Llano, I., Celio, M.R., and Marty, A. (2000). Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. 97: 13372–13377, https://doi.org/10.1073/pnas.230362997.Suche in Google Scholar

Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D.A., and Giuffrida Stella, A.M. (2007). Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8: 766–775, https://doi.org/10.1038/nrn2214.Suche in Google Scholar

Chen, S., Chen, F., Amin, N., Ren, Q., Ye, S., Hu, Z., Tan, X., Jiang, M., and Fang, M. (2022). Defects of parvalbumin-positive interneurons in the ventral dentate gyrus region are implicated depression-like behavior in mice. Brain, Behav. Immun. 99: 27–42, https://doi.org/10.1016/j.bbi.2021.09.013.Suche in Google Scholar

Chou, Y.-h., Sundman, M., That, V.T., Green, J., and Trapani, C. (2022). Cortical excitability and plasticity in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res. Rev. 79: 101660, https://doi.org/10.1016/j.arr.2022.101660.Suche in Google Scholar

Chung, D.W., Volk, D.W., Arion, D., Zhang, Y., Sampson, A.R., and Lewis, D.A. (2016). Dysregulated ErbB4 splicing in schizophrenia: selective effects on parvalbumin expression. Am. J. Psychiatry 173: 60–68, https://doi.org/10.1176/appi.ajp.2015.15020150.Suche in Google Scholar

Coughlin, J.M., Wang, Y., Ambinder, E.B., Ward, R.E., Minn, I., Vranesic, M., Kim, P.K., Ford, C.N., Higgs, C., Hayes, L.N., et al.. (2016). In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [(11)C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatr. 6: e777, https://doi.org/10.1038/tp.2016.40.Suche in Google Scholar

Craig, A.M. and Kang, Y. (2007). Neurexin–neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 17: 43–52, https://doi.org/10.1016/j.conb.2007.01.011.Suche in Google Scholar

Crapser, J.D., Spangenberg, E.E., Barahona, R.A., Arreola, M.A., Hohsfield, L.A., and Green, K.N. (2020). Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine 58, https://doi.org/10.1016/j.ebiom.2020.102919.Suche in Google Scholar

Cuenod, M., Steullet, P., Cabungcal, J.-H., Dwir, D., Khadimallah, I., Klauser, P., Conus, P., and Do, K.Q. (2022). Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol. Psychiatr. 27: 1886–1897, https://doi.org/10.1038/s41380-021-01374-w.Suche in Google Scholar

Culpepper, L. (2015). Neuroanatomy and physiology of cognition. J. Clin. Psychiatr. 76: e900, https://doi.org/10.4088/jcp.13086tx3c.Suche in Google Scholar

Dani, M., Wood, M., Mizoguchi, R., Fan, Z., Walker, Z., Morgan, R., Hinz, R., Biju, M., Kuruvilla, T., Brooks, D.J., et al.. (2018). Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141: 2740–2754, https://doi.org/10.1093/brain/awy188.Suche in Google Scholar

Delevich, K., Tucciarone, J., Huang, Z.J., and Li, B. (2015). The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J. Neurosci. 35: 5743–5753, https://doi.org/10.1523/jneurosci.4565-14.2015.Suche in Google Scholar

Deng, X., Gu, L., Sui, N., Guo, J., and Liang, J. (2019) Parvalbumin interneuron in the ventral hippocampus functions as a discriminator in social memory, Proc. Natl. Acad. Sci. 116: 16583–16592, https://doi.org/10.1073/pnas.1819133116.Suche in Google Scholar

Dienel, S.J. and Lewis, D.A. (2019). Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol. Dis. 131: 104208, https://doi.org/10.1016/j.nbd.2018.06.020.Suche in Google Scholar

Dikmen, H.O., Hemmerich, M., Lewen, A., Hollnagel, J.-O., Chausse, B., and Kann, O. (2020). GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J. Neuroinflammation 17: 1–13, https://doi.org/10.1186/s12974-020-01903-4.Suche in Google Scholar

Doddato, G., Fabbiani, A., Scandurra, V., Canitano, R., Mencarelli, M.A., Renieri, A., and Ariani, F. (2022). Identification of a novel SHANK2 pathogenic variant in a patient with a neurodevelopmental disorder. Genes 13: 688, https://doi.org/10.3390/genes13040688.Suche in Google Scholar

Dong, J., Chen, W., Liu, N., Chang, S., Zhu, W., and Kang, J. (2022). NRG1 knockdown rescues PV interneuron GABAergic maturation deficits and schizophrenia behaviors in fetal growth restriction mice. Cell Death Discov. 8: 476, https://doi.org/10.1038/s41420-022-01271-3.Suche in Google Scholar

Duhne, M., Lara-González, E., Laville, A., Padilla-Orozco, M., Ávila-Cascajares, F., Arias-García, M., Galarraga, E., and Bargas, J. (2021). Activation of parvalbumin-expressing neurons reconfigures neuronal ensembles in murine striatal microcircuits. Eur. J. Neurosci. 53: 2149–2164, https://doi.org/10.1111/ejn.14670.Suche in Google Scholar

Dunn, G.A., Loftis, J.M., and Sullivan, E.L. (2020). Neuroinflammation in psychiatric disorders: an introductory primer. Pharmacol. Biochem. Behav. 196: 172981, https://doi.org/10.1016/j.pbb.2020.172981.Suche in Google Scholar

Dwir, D., Giangreco, B., Xin, L., Tenenbaum, L., Cabungcal, J.-H., Steullet, P., Goupil, A., Cleusix, M., Jenni, R., Chtarto, A., et al.. (2020). MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol. Psychiatr. 25: 2889–2904, https://doi.org/10.1038/s41380-019-0393-5.Suche in Google Scholar

Dwir, D., Cabungcal, J.-H., Xin, L., Giangreco, B., Parietti, E., Cleusix, M., Jenni, R., Klauser, P., Conus, P., Cuénod, M., et al.. (2021). Timely N-acetyl-cysteine and environmental enrichment rescue oxidative stress-induced parvalbumin interneuron impairments via MMP9/RAGE pathway: a translational approach for early intervention in psychosis. Schizophr. Bull. 47: 1782–1794, https://doi.org/10.1093/schbul/sbab066.Suche in Google Scholar

Espinoza, C., Guzman, S.J., Zhang, X., and Jonas, P. (2018). Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nat. Commun. 9: 4605, https://doi.org/10.1038/s41467-018-06899-3.Suche in Google Scholar

Etherton, M.R., Blaiss, C.A., Powell, C.M., and Südhof, T.C. (2009). Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc. Natl. Acad. Sci. U. S. A. 106: 17998–18003, https://doi.org/10.1073/pnas.0910297106.Suche in Google Scholar

Favuzzi, E., Huang, S., Saldi, G.A., Binan, L., Ibrahim, L.A., Fernández-Otero, M., Cao, Y., Zeine, A., Sefah, A., Zheng, K., et al.. (2021). GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184: 4048–4063.e4032, https://doi.org/10.1016/j.cell.2021.06.018.Suche in Google Scholar

Feldmeyer, D., Qi, G., Emmenegger, V., and Staiger, J.F. (2018). Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience 368: 132–151, https://doi.org/10.1016/j.neuroscience.2017.05.027.Suche in Google Scholar

Feng, X.-Y., Hu, H.-D., Chen, J., Long, C., Yang, L., and Wang, L. (2021). Acute neuroinflammation increases excitability of prefrontal parvalbumin interneurons and their functional recruitment during novel object recognition. Brain, Behav. Immun. 98: 48–58, https://doi.org/10.1016/j.bbi.2021.08.216.Suche in Google Scholar

Ferguson, B.R. and Gao, W.-J. (2018). PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural. Circuits. 12: 37, https://doi.org/10.3389/fncir.2018.00037.Suche in Google Scholar

Fernandes, J.M., Cajão, R., Lopes, R., Jerónimo, R., and Barahona-Corrêa, J.B. (2018). Social cognition in schizophrenia and autism spectrum disorders: a systematic review and meta-analysis of direct comparisons. Front. Psychiatr. 9: 504, https://doi.org/10.3389/fpsyt.2018.00504.Suche in Google Scholar

Filice, F., Vörckel, K.J., Sungur, A.Ö., Wöhr, M., and Schwaller, B. (2016). Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol. Brain. 9: 1–17, https://doi.org/10.1186/s13041-016-0192-8.Suche in Google Scholar

Filice, F., Janickova, L., Henzi, T., Bilella, A., and Schwaller, B. (2020). The parvalbumin hypothesis of autism spectrum disorder. Front. Cell. Neurosci. 14: 577525, https://doi.org/10.3389/fncel.2020.577525.Suche in Google Scholar

Fish, K.N., Hoftman, G.D., Sheikh, W., Kitchens, M., and Lewis, D.A. (2013). Parvalbumin-containing chandelier and basket cell boutons have distinctive modes of maturation in monkey prefrontal cortex. J. Neurosci. 33: 8352–8358, https://doi.org/10.1523/jneurosci.0306-13.2013.Suche in Google Scholar

Fu, X. and Tasker, J.G. (2024). Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front. Cell. Neurosci. 18: 1421617, https://doi.org/10.3389/fncel.2024.1421617.Suche in Google Scholar

Fu, X., Teboul, E., Maguire, J., and Tasker, J.G. (2021). Neuromodulation-induced burst firing in parvalbumin interneurons of the basolateral amygdala mediates transition between fear-associated network and behavioral states. BioRxiv [Preprint], https://doi.org/10.1101/2021.04.19.440525.Suche in Google Scholar

Fu, X., Teboul, E., Weiss, G.L., Antonoudiou, P., Borkar, C.D., Fadok, J.P., Maguire, J., and Tasker, J.G. (2022). Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice. Nat. Commun. 13: 1290, https://doi.org/10.1038/s41467-022-28928-y.Suche in Google Scholar

Gao, R., Ji, M.-h., Gao, D.-p., Yang, R.-h., Zhang, S.-g., Yang, J.-j., and Shen, J.-c. (2017a). Neuroinflammation-induced downregulation of hippocampacal neuregulin 1-ErbB4 signaling in the parvalbumin interneurons might contribute to cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation 40: 387–400, https://doi.org/10.1007/s10753-016-0484-2.Suche in Google Scholar

Gao, R., Ji, M.-h., Gao, D.-p., Yang, R.-h., Zhang, S.-g., Yang, J.-j., and Shen, J.-c. (2017b). Neuroinflammation-induced downregulation of hippocampacal neuregulin 1-ErbB4 signaling in the parvalbumin interneurons might contribute to cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation 40: 387–400, https://doi.org/10.1007/s10753-016-0484-2.Suche in Google Scholar

Garas, F.N., Shah, R.S., Kormann, E., Doig, N.M., Vinciati, F., Nakamura, K.C., Dorst, M.C., Smith, Y., Magill, P.J., and Sharott, A. (2016). Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. Elife 5: e16088.10.7554/eLife.16088Suche in Google Scholar

Gazit, T., Friedman, A., Lax, E., Samuel, M., Zahut, R., Katz, M., Abraham, L., Tischler, H., Teicher, M., and Yadid, G. (2015). Programmed deep brain stimulation synchronizes VTA gamma band field potential and alleviates depressive-like behavior in rats. Neuropharmacology 91: 135–141, https://doi.org/10.1016/j.neuropharm.2014.12.003.Suche in Google Scholar

Gervais, É., Iloun, P., Martianova, E., Goncalves Bessa, A.C., Rivest, S., and Topolnik, L. (2022). Structural analysis of the microglia–interneuron interactions in the CA1 hippocampal area of the APP/PS1 mouse model of Alzheimer’s disease. J. Comp. Neurol. 530: 1423–1437, https://doi.org/10.1002/cne.25289.Suche in Google Scholar

Giesers, N.K. and Wirths, O. (2020). Loss of hippocampal calretinin and parvalbumin interneurons in the 5XFAD mouse model of Alzheimer’s disease. ASN Neuro. 12, https://doi.org/10.1177/1759091420925356.Suche in Google Scholar

Giovannetti, E.A. and Fuhrmann, M. (2019). Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res. 1707: 216–226, https://doi.org/10.1016/j.brainres.2018.11.042.Suche in Google Scholar

Gu, Y., Tran, T., Murase, S., Borrell, A., Kirkwood, A., and Quinlan, E.M. (2016). Neuregulin-dependent regulation of fast-spiking interneuron excitability controls the timing of the critical period. J. Neurosci. 36: 10285–10295, https://doi.org/10.1523/jneurosci.4242-15.2016.Suche in Google Scholar

Guan, Y., Guo, W., Robbins, M.T., Dubner, R., and Ren, K. (2004). Changes in AMPA receptor phosphorylation in the rostral ventromedial medulla after inflammatory hyperalgesia in rats. Neurosci. Lett. 366: 201–205, https://doi.org/10.1016/j.neulet.2004.05.051.Suche in Google Scholar

Guan, A., Wang, S., Qiu, C., Huang, A., Li, Y., Li, X., Wang, J., Wang, Q., and Deng, B. (2022). The role of gamma oscillations in central nervous system diseases: mechanism and treatment. Front. Cell. Neurosci. 407, https://doi.org/10.3389/fncel.2022.962957.Suche in Google Scholar

Guzman, S.J., Schlögl, A., Espinoza, C., Zhang, X., Suter, B., and Jonas, P. (2019). Fast signaling and focal connectivity of PV+ interneurons ensure efficient pattern separation by lateral inhibition in a full-scale dentate gyrus network model. biorxiv: 647800.10.1101/647800Suche in Google Scholar

Hafizi, S., Tseng, H.-H., Rao, N., Selvanathan, T., Kenk, M., Bazinet, R.P., Suridjan, I., Wilson, A.A., Meyer, J.H., Remington, G., et al.. (2017). Imaging microglial activation in untreated first-episode psychosis: a PET study with [18F] FEPPA. Am. J. Psychiatr. 174: 118–124, https://doi.org/10.1176/appi.ajp.2016.16020171.Suche in Google Scholar

Haikonen, J., Szrinivasan, R., Ojanen, S., Rhee, J.K., Ryazantseva, M., Sulku, J., Zumaraite, G., and Lauri, S.E. (2024). GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol. Psychiatr. 1–17, https://doi.org/10.1038/s41380-024-02641-2.Suche in Google Scholar

Hamm, J.P., Peterka, D.S., Gogos, J.A., and Yuste, R. (2017). Altered cortical ensembles in mouse models of schizophrenia. Neuron 94: 153–167, https://doi.org/10.1016/j.neuron.2017.03.019.Suche in Google Scholar

Hardingham, G.E. and Do, K.Q. (2016). Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci. 17: 125–134, https://doi.org/10.1038/nrn.2015.19.Suche in Google Scholar

Hashimoto, T., Volk, D.W., Eggan, S.M., Mirnics, K., Pierri, J.N., Sun, Z., Sampson, A.R., and Lewis, D.A. (2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 23: 6315–6326, https://doi.org/10.1523/jneurosci.23-15-06315.2003.Suche in Google Scholar

Hijazi, S., Smit, A.B., and van Kesteren, R.E. (2023). Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer’s disease. Mol. Psychiatr. https://doi.org/10.1038/s41380-023-02168-y.Suche in Google Scholar

Hollnagel, J.-O., Elzoheiry, S., Gorgas, K., Kins, S., Beretta, C.A., Kirsch, J., Kuhse, J., Kann, O., and Kiss, E. (2019). Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer’s disease amyloidosis. PLoS One 14: e0209228, https://doi.org/10.1371/journal.pone.0209228.Suche in Google Scholar

Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham, T.Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., et al.. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540: 230–235, https://doi.org/10.1038/nature20587.Suche in Google Scholar

Ji, M.-H., Qiu, L.-L., Tang, H., Ju, L.-S., Sun, X.-R., Zhang, H., Jia, M., Zuo, Z.-Y., Shen, J.-C., and Yang, J.-J. (2015). Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. J. Neuroinflammation 12: 1–15, https://doi.org/10.1186/s12974-015-0401-x.Suche in Google Scholar

Ji, M.-h., Lei, L., Gao, D.-p., Tong, J.-h., Wang, Y., and Yang, J.-j. (2020). Neural network disturbance in the medial prefrontal cortex might contribute to cognitive impairments induced by neuroinflammation. Brain, Behav Immun. 89: 133–144, https://doi.org/10.1016/j.bbi.2020.06.001.Suche in Google Scholar

Juarez, P. and Martínez Cerdeño, V. (2022). Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front. Psychiatr. 13: 913550, https://doi.org/10.3389/fpsyt.2022.913550.Suche in Google Scholar

Jung, K., Choi, Y., and Kwon, H.-B. (2022). Cortical control of chandelier cells in neural codes. Front. Cell. Neurosci. 16: 992409, https://doi.org/10.3389/fncel.2022.992409.Suche in Google Scholar

Kann, O. (2016). The interneuron energy hypothesis: implications for brain disease. Neurobiol. Dis. 90: 75–85, https://doi.org/10.1016/j.nbd.2015.08.005.Suche in Google Scholar

Kapogiannis, D., Reiter, D.A., Willette, A.A., and Mattson, M.P. (2013). Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 64: 112–119, https://doi.org/10.1016/j.neuroimage.2012.09.029.Suche in Google Scholar

Kaur, C., Rathnasamy, G., and Ling, E.-A. (2013). Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J. Neuroimmune Pharmacol. 8: 66–78, https://doi.org/10.1007/s11481-012-9347-2.Suche in Google Scholar

Kisvárday, Z.F. (1992). GABAergic networks of basket cells in the visual cortex. Prog. Brain Res. 90: 385–405, https://doi.org/10.1016/s0079-6123(08)63623-7.Suche in Google Scholar

Korotkova, T., Fuchs, E.C., Ponomarenko, A., von Engelhardt, J., and Monyer, H. (2010). NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68: 557–569, https://doi.org/10.1016/j.neuron.2010.09.017.Suche in Google Scholar

Krendl, A.C. and Betzel, R.F. (2022). Social cognitive network neuroscience. Soc. Cogn. Affect. Neurosci 17: 510–529, https://doi.org/10.1093/scan/nsac020.Suche in Google Scholar

Kukovska, L. and Poort, J. (2024). The impact of parvalbumin interneurons on visual discrimination depends on strength and timing of activation and task difficulty. BioRxiv [Preprint], https://doi.org/10.1101/2024.06.07.597911Suche in Google Scholar

Kullmann, D.M. (2011). Interneuron networks in the hippocampus. Curr. Opin. Neurobiol. 21: 709–716, https://doi.org/10.1016/j.conb.2011.05.006.Suche in Google Scholar

Kumar, A. (2018). Editorial: neuroinflammation and cognition. Front. Aging Neurosci. 10: 413, https://doi.org/10.3389/fnagi.2018.00413.Suche in Google Scholar

Kurudenkandy, F.R., Zilberter, M., Biverstål, H., Presto, J., Honcharenko, D., Strömberg, R., Johansson, J., Winblad, B., and Fisahn, A. (2014). Amyloid-β-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation. J. Neurosci. 34: 11416–11425, https://doi.org/10.1523/jneurosci.1195-14.2014.Suche in Google Scholar

Lagler, M., Ozdemir, A.T., Lagoun, S., Malagon-Vina, H., Borhegyi, Z., Hauer, R., Jelem, A., and Klausberger, T. (2016). Divisions of identified parvalbumin-expressing basket cells during working memory-guided decision making. Neuron 91: 1390–1401, https://doi.org/10.1016/j.neuron.2016.08.010.Suche in Google Scholar

Laing, B.T., Anderson, M.S., Jayan, A., Park, A.S., Erbaugh, L.J., Solis, O., Wilson, D.J., Michaelides, M., and Aponte, Y. (2022). Activation of the fear-responsive anterior hypothalamic area promotes avoidance and triggers compulsive grooming behavior in mice. BioRxiv [Preprint], https://doi.org/10.1101/2022.09.06.506804.Suche in Google Scholar

Laing, B.T., Anderson, M.S., Bonaventura, J., Jayan, A., Sarsfield, S., Gajendiran, A., Michaelides, M., and Aponte, Y. (2023). Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr. Biol. 33: 3215–3228. e3217, https://doi.org/10.1016/j.cub.2023.06.070.Suche in Google Scholar

Le Belle, J.E., Sperry, J., Ngo, A., Ghochani, Y., Laks, D.R., López-Aranda, M., Silva, A.J., and Kornblum, H.I. (2014). Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells. Stem Cell Rep. 3: 725–734, https://doi.org/10.1016/j.stemcr.2014.09.004.Suche in Google Scholar

Leitch, B. (2024). Parvalbumin interneuron dysfunction in neurological disorders: focus on epilepsy and alzheimer’s disease. Int. J. Mol. Sci. 25: 5549, https://doi.org/10.3390/ijms25105549.Suche in Google Scholar

Lewis, D.A., Curley, A.A., Glausier, J.R., and Volk, D.W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35: 57–67, https://doi.org/10.1016/j.tins.2011.10.004.Suche in Google Scholar

Li, Q., Fu, Y., Liu, C., and Meng, Z. (2022). Transcranial direct current stimulation of the dorsolateral prefrontal cortex for treatment of neuropsychiatric disorders. Front. Behav. Neurosci. 16: 893955, https://doi.org/10.3389/fnbeh.2022.893955.Suche in Google Scholar

Li, H.Y., Zhu, M.Z., Yuan, X.R., Guo, Z.X., Pan, Y.D., Li, Y.Q., and Zhu, X.H. (2023). A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell 186: 1352–1368.e1318, https://doi.org/10.1016/j.cell.2023.02.036.Suche in Google Scholar

Mackenzie-Gray Scott, C.A., Pelkey, K.A., Caccavano, A.P., Abebe, D., Lai, M., Black, K.N., Brown, N.D., Trevelyan, A.J., and McBain, C.J. (2022). Resilient hippocampal gamma rhythmogenesis and parvalbumin-expressing interneuron function before and after plaque burden in 5xFAD Alzheimer’s disease model. Front. Synaptic Neurosci. 14: 857608, https://doi.org/10.3389/fnsyn.2022.857608.Suche in Google Scholar

Madar, A.D., Ewell, L.A., and Jones, M.V. (2019). Pattern separation of spiketrains in hippocampal neurons. Sci. Rep. 9: 5282, https://doi.org/10.1038/s41598-019-41503-8.Suche in Google Scholar

Mahar, I., Albuquerque, M.S., Mondragon-Rodriguez, S., Cavanagh, C., Davoli, M.A., Chabot, J.-G., Williams, S., Mechawar, N., Quirion, R., and Krantic, S. (2017). Phenotypic alterations in hippocampal NPY-and PV-expressing interneurons in a presymptomatic transgenic mouse model of Alzheimer’s disease. Front. Aging Neurosci. 8: 327, https://doi.org/10.3389/fnagi.2016.00327.Suche in Google Scholar

Malhi, G.S., Ivanovski, B., Hadzi-Pavlovic, D., Mitchell, P.B., Vieta, E., and Sachdev, P. (2007). Neuropsychological deficits and functional impairment in bipolar depression, hypomania and euthymia. Bipolar Disord.: 114–125, https://doi.org/10.1111/j.1399-5618.2007.00324.x.Suche in Google Scholar

Mannekote Thippaiah, S., Pradhan, B., Voyiaziakis, E., Shetty, R., Iyengar, S., Olson, C., and Tang, Y.-Y. (2022). Possible role of parvalbumin interneurons in meditation and psychiatric illness. .J. Neuropsychiatry and Clin. Neurosci. 34: 113–123, https://doi.org/10.1176/appi.neuropsych.21050136.Suche in Google Scholar

Mao, D. (2023). Neural correlates of spatial navigation in primate hippocampus. Neurosci. Bull. 39: 315–327, https://doi.org/10.1007/s12264-022-00968-w.Suche in Google Scholar

Mao, W., Watanabe, T., Cho, S., Frost, J.L., Truong, T., Zhao, X., and Futai, K. (2015). Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin‐expressing inhibitory interneurons. Eur. J. Neurosci. 41: 1025–1035, https://doi.org/10.1111/ejn.12877.Suche in Google Scholar

Mao, M., Zhou, Z., Sun, M., Wang, C., and Sun, J. (2021). The dysfunction of parvalbumin interneurons mediated by microglia contributes to cognitive impairment induced by lipopolysaccharide challenge. Neurosci. Lett. 762: 136133, https://doi.org/10.1016/j.neulet.2021.136133.Suche in Google Scholar

Marín, O. (2012). Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13: 107–120, https://doi.org/10.1038/nrn3155.Suche in Google Scholar

Martin, D.M., Su, Y., Chan, H.F., Dielenberg, V., Chow, E., Xu, M., Wang, A., Nikolin, S., Moffa, A.H., and Loo, C.K. (2024). Individualised transcranial magnetic stimulation targeting of the left dorsolateral prefrontal cortex for enhancing cognition: a randomised controlled trial. Brain Sci. 14: 299, https://doi.org/10.3390/brainsci14040299.Suche in Google Scholar

Massi, L., Lagler, M., Hartwich, K., Borhegyi, Z., Somogyi, P., and Klausberger, T. (2012). Temporal dynamics of parvalbumin-expressing axo-axonic and basket cells in the rat medial prefrontal cortex in vivo. J. Neurosci. 32: 16496–16502, https://doi.org/10.1523/jneurosci.3475-12.2012.Suche in Google Scholar

Mattson, M.P. (2020). Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer’s disease: amelioration by metabolic switching. Int. Rev. Neurobiol. 154: 191–205, https://doi.org/10.1016/bs.irn.2020.01.006.Suche in Google Scholar

Mauney, S.A., Athanas, K.M., Pantazopoulos, H., Shaskan, N., Passeri, E., Berretta, S., and Woo, T.-U.W. (2013). Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol. Psychiatr. 74: 427–435, https://doi.org/10.1016/j.biopsych.2013.05.007.Suche in Google Scholar

McDonald, W.M. (2017). Overview of neurocognitive disorders. Focus (Am. Psychiatr. Publ.). 15: 4–12, https://doi.org/10.1176/appi.focus.20160030.Suche in Google Scholar

Mednick, S.A., Machon, R.A., Huttunen, M.O., and Bonett, D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiatr. 45: 189–192, https://doi.org/10.1001/archpsyc.1988.01800260109013.Suche in Google Scholar

Mei, L. and Nave, K.-A. (2014). Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83: 27–49, https://doi.org/10.1016/j.neuron.2014.06.007.Suche in Google Scholar

Mészár, Z., Girard, F., Saper, C.B., and Celio, M.R. (2012). The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents. J. Comp. Neurol. 520: 798–815, https://doi.org/10.1002/cne.22789.Suche in Google Scholar

Miyamae, T., Chen, K., Lewis, D.A., and Gonzalez-Burgos, G. (2017). Distinct physiological maturation of parvalbumin-positive neuron subtypes in mouse prefrontal cortex. J. Neurosci. 37: 4883–4902, https://doi.org/10.1523/jneurosci.3325-16.2017.Suche in Google Scholar

Monteiro, P., Barak, B., Zhou, Y., McRae, R., Rodrigues, D., Wickersham, I.R., and Feng, G. (2018). Dichotomous parvalbumin interneuron populations in dorsolateral and dorsomedial striatum. J. Physiol. 596: 3695–3707, https://doi.org/10.1113/jp275936.Suche in Google Scholar

Mukherjee, A., Carvalho, F., Eliez, S., and Caroni, P. (2019). Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell 178: 1387–1402. e1314, https://doi.org/10.1016/j.cell.2019.07.023.Suche in Google Scholar

Nahar, L., Delacroix, B.M., and Nam, H.W. (2021). The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Front. Psychiatr. 12: 679960, https://doi.org/10.3389/fpsyt.2021.679960.Suche in Google Scholar

Narayana, D.B.A., Joshi, H., and Tiwari, V.H.S. (2023). Chapter Two - overview of approaches in ayurveda for neurological health and disorders. In: Muralidhara, M. and Rajini, P.S. (Eds.). Ayurvedic herbal Preparations in neurological disorders. Academic Press, Cambridge, Massachusetts, pp. 41–88.10.1016/B978-0-443-19084-1.00009-0Suche in Google Scholar

Nawreen, N., Oshima, K., Chambers, J., Smail, M., and Herman, J.P. (2024). Inhibition of prefrontal cortex parvalbumin interneurons mitigates behavioral and physiological sequelae of chronic stress in male mice. Stress 27: 2361238, https://doi.org/10.1080/10253890.2024.2361238.Suche in Google Scholar

Nussbaum, R.L. and Ellis, C.E. (2003). Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348: 1356–1364, https://doi.org/10.1056/nejm2003ra020003.Suche in Google Scholar

Ognjanovski, N., Schaeffer, S., Wu, J., Mofakham, S., Maruyama, D., Zochowski, M., and Aton, S.J. (2017). Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat. Commun. 8: 15039, https://doi.org/10.1038/ncomms15039.Suche in Google Scholar

Palmisano, A., Pandit, S., Smeralda, C.L., Demchenko, I., Rossi, S., Battelli, L., Rivolta, D., Bhat, V., and Santarnecchi, E. (2024). The pathophysiological underpinnings of gamma-band alterations in psychiatric disorders. Life 14: 578, https://doi.org/10.3390/life14050578.Suche in Google Scholar

Panthi, S. and Leitch, B. (2019). The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol. Dis. 132: 104610, https://doi.org/10.1016/j.nbd.2019.104610.Suche in Google Scholar

Panthi, S. and Leitch, B. (2021). Chemogenetic activation of feed-forward inhibitory parvalbumin-expressing interneurons in the cortico-thalamocortical network during absence seizures. Front. Cell. Neurosci. 15: 688905, https://doi.org/10.3389/fncel.2021.688905.Suche in Google Scholar

Papageorgiou, I.E., Lewen, A., Galow, L.V., Cesetti, T., Scheffel, J., Regen, T., Hanisch, U.-K., and Kann, O. (2016) TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ, Proc. Nat. Acad. Sci. 113: 212–217, https://doi.org/10.1073/pnas.1513853113.Suche in Google Scholar

Papagno, C. and Trojano, L. (2018). Cognitive and behavioral disorders in Parkinson’s disease: an update. I: cognitive impairments. Neurol. Sci. 39: 215–223, https://doi.org/10.1007/s10072-017-3154-8.Suche in Google Scholar

Peça, J., Feliciano, C., Ting, J.T., Wang, W., Wells, M.F., Venkatraman, T.N., Lascola, C.D., Fu, Z., and Feng, G. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472: 437–442, https://doi.org/10.1038/nature09965.Suche in Google Scholar

Peñagarikano, O., Abrahams, B.S., Herman, E.I., Winden, K.D., Gdalyahu, A., Dong, H., Sonnenblick, L.I., Gruver, R., Almajano, J., Bragin, A., et al.. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147: 235–246, https://doi.org/10.1016/j.cell.2011.08.040.Suche in Google Scholar

Perlman, G., Tanti, A., and Mechawar, N. (2021). Parvalbumin interneuron alterations in stress-related mood disorders: a systematic review. Neurobiol. Stress. 15: 100380, https://doi.org/10.1016/j.ynstr.2021.100380.Suche in Google Scholar

Perlmutter, L.S., Barron, E., and Chui, H.C. (1990). Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci. Lett. 119: 32–36, https://doi.org/10.1016/0304-3940(90)90748-x.Suche in Google Scholar

Perry, V.H. and Holmes, C. (2014). Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10: 217–224, https://doi.org/10.1038/nrneurol.2014.38.Suche in Google Scholar

Persico, A.M. and Napolioni, V. (2013). Autism genetics. Behav. Brain Res. 251: 95–112, https://doi.org/10.1016/j.bbr.2013.06.012.Suche in Google Scholar

Petersen, S.E. and Sporns, O. (2015). Brain networks and cognitive architectures. Neuron 88: 207–219, https://doi.org/10.1016/j.neuron.2015.09.027.Suche in Google Scholar

Pinna, A. and Colasanti, A. (2021). The neurometabolic basis of mood instability: the parvalbumin interneuron link–a systematic review and meta-analysis. Front. Pharmacol 12: 689473, https://doi.org/10.3389/fphar.2021.689473.Suche in Google Scholar

Qin, L., Wu, X., Block, M.L., Liu, Y., Breese, G.R., Hong, J.S., Knapp, D.J., and Crews, F.T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453–462, https://doi.org/10.1002/glia.20467.Suche in Google Scholar

Radyushkin, K., Hammerschmidt, K., Boretius, S., Varoqueaux, F., El-Kordi, A., Ronnenberg, A., Winter, D., Frahm, J., Fischer, J., Brose, N., et al.. (2009). Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8: 416–425, https://doi.org/10.1111/j.1601-183x.2009.00487.x.Suche in Google Scholar

Rebola, N., Carta, M., and Mulle, C. (2017). Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat. Rev. Neurosci. 18: 208–220, https://doi.org/10.1038/nrn.2017.10.Suche in Google Scholar

Reynolds, S., Millette, A., and Devine, D.P. (2012). Sensory and motor characterization in the postnatal valproate rat model of autism. Dev. Neurosci. 34: 258–267, https://doi.org/10.1159/000336646.Suche in Google Scholar

Rezaei, S., Prévot, T.D., Vieira, E., and Sibille, E. (2024). LPS-induced inflammation reduces GABAergic interneuron markers and brain-derived neurotrophic factor in mouse prefrontal cortex and hippocampus. Brain Behav. Immun. Health 38: 100761.10.1016/j.bbih.2024.100761Suche in Google Scholar

Richetin, K., Steullet, P., Pachoud, M., Perbet, R., Parietti, E., Maheswaran, M., Eddarkaoui, S., Bégard, S., Pythoud, C., Rey, M., et al.. (2020). Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat. Neurosci. 23: 1567–1579, https://doi.org/10.1038/s41593-020-00728-x.Suche in Google Scholar

Rubio, S.E., Vega-Flores, G., Martínez, A., Bosch, C., Pérez-Mediavilla, A., del Río, J., Gruart, A., Delgado-García, J.M., Soriano, E., and Pascual, M. (2012). Accelerated aging of the GABAergic septohippocampal pathway and decreased hippocampal rhythms in a mouse model of Alzheimer’s disease. FASEB J. 26: 4458–4467, https://doi.org/10.1096/fj.12-208413.Suche in Google Scholar

Ruden, J.B., Dugan, L.L., and Konradi, C. (2021). Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacol 46: 279–287, https://doi.org/10.1038/s41386-020-0778-9.Suche in Google Scholar

Sæther, L.S., Ueland, T., Haatveit, B., Maglanoc, L.A., Szabo, A., Djurovic, S., Aukrust, P., Roelfs, D., Mohn, C., Ormerod, M.B.E.G., et al.. (2023). Inflammation and cognition in severe mental illness: patterns of covariation and subgroups. Mol. Psychiatr. 28: 1284–1292, https://doi.org/10.1038/s41380-022-01924-w.Suche in Google Scholar

Santos-Silva, T., dos Santos Fabris, D., de Oliveira, C.L., Guimarães, F.S., and Gomes, F.V. (2024). Prefrontal and hippocampal parvalbumin interneurons in animal models for schizophrenia: a systematic review and meta-analysis. Schizophr. Bull. 50: 210–223, https://doi.org/10.1093/schbul/sbad123.Suche in Google Scholar

Schilling, S., Chausse, B., Dikmen, H.O., Almouhanna, F., Hollnagel, J.-O., Lewen, A., and Kann, O. (2021). TLR2-and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain, Behav. Immun. 96: 80–91, https://doi.org/10.1016/j.bbi.2021.05.013.Suche in Google Scholar

Schneider-Mizell, C.M., Bodor, A.L., Collman, F., Brittain, D., Bleckert, A.A., Dorkenwald, S., Turner, N.L., Macrina, T., Lee, K., and Lu, R. (2020). Chandelier cell anatomy and function reveal a variably distributed but common signal. BioRxiv [Preprint], https://doi.org/10.1101/2020.03.31.018952Suche in Google Scholar

Schoonover, K.E., Dienel, S.J., and Lewis, D.A. (2020). Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: insights for rational biomarker development. Biomark. Neuropsychiatr. 3: 100015, https://doi.org/10.1016/j.bionps.2020.100015.Suche in Google Scholar

Scudder, S.L., Baimel, C., Macdonald, E.E., and Carter, A.G. (2018). Hippocampal-evoked feedforward inhibition in the nucleus accumbens. J. Neurosci. 38: 9091–9104, https://doi.org/10.1523/jneurosci.1971-18.2018.Suche in Google Scholar

Sears, S.M. and Hewett, S.J. (2021). Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp. Biol. Med. 246: 1069–1083, https://doi.org/10.1177/1535370221989263.Suche in Google Scholar

Shao, F., Fang, J., Qiu, M., Wang, S., Xi, D., Shao, X., He, X., Fang, J., and Du, J. (2021). Electroacupuncture ameliorates chronic inflammatory pain-related anxiety by activating PV interneurons in the anterior cingulate cortex. Front. Neurosci. 15: 691931, https://doi.org/10.3389/fnins.2021.691931.Suche in Google Scholar

Sheffield, L.G., Marquis, J.G., and Berman, N.E. (2000). Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease. Neurosci. Lett. 285: 165–168, https://doi.org/10.1016/s0304-3940(00)01037-5.Suche in Google Scholar

Shen, L. and Ji, H.-F. (2019). Associations between gut microbiota and Alzheimer’s disease: current evidences and future therapeutic and diagnostic perspectives. J. Alzheimers. Dis 68: 25–31, https://doi.org/10.3233/jad-181143.Suche in Google Scholar

Siemian, J.N., Borja, C.B., Sarsfield, S., Kisner, A., and Aponte, Y. (2019). Lateral hypothalamic fast-spiking parvalbumin neurons modulate nociception through connections in the periaqueductal gray area. Sci. Rep. 9: 12026, https://doi.org/10.1038/s41598-019-48537-y.Suche in Google Scholar

Siemian, J.N., Sarsfield, S., and Aponte, Y. (2020). Glutamatergic fast-spiking parvalbumin neurons in the lateral hypothalamus: electrophysiological properties to behavior. Physiol. Behav. 221: 112912, https://doi.org/10.1016/j.physbeh.2020.112912.Suche in Google Scholar

Shi, W., Wei, X., Wang, X., Du, S., Liu, W., Song, J., and Wang, Y. (2019). Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. PNAS USA 116: 27063–27073, https://doi.org/10.1073/pnas.1902680116.Suche in Google Scholar

Siemian, J.N., Arenivar, M.A., Sarsfield, S., Borja, C.B., Erbaugh, L.J., Eagle, A.L., Robison, A.J., Leinninger, G., and Aponte, Y. (2021). An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. Elife 10, https://doi.org/10.7554/elife.66446.Suche in Google Scholar

Smeralda, C.L., Pandit, S., Turrini, S., Reilly, J., Palmisano, A., Sprugnoli, G., Hampel, H., Benussi, A., Borroni, B., Press, D., et al.. (2024). The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res. Rev. 101: 102509, https://doi.org/10.1016/j.arr.2024.102509.Suche in Google Scholar

Sohal, V.S. and Rubenstein, J.L. (2019). Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatr. 24: 1248–1257, https://doi.org/10.1038/s41380-019-0426-0.Suche in Google Scholar

Sorce, S. and Krause, K.-H. (2009). NOX enzymes in the central nervous system: from signaling to disease. Antioxid. Redox. Signal. 11: 2481–2504, https://doi.org/10.1089/ars.2009.2578.Suche in Google Scholar

Sosso, F.E. and Raouafi, S. (2016). Brain disorders: correlation between cognitive impairment and complex combination. Ment Health Fam Med 12: 215–222, https://doi.org/10.25149/1756-8358.1202010.Suche in Google Scholar

Spampanato, J., Sullivan, R.K., Perumal, M.B., and Sah, P. (2016). Development and physiology of GABA ergic feedback excitation in parvalbumin expressing interneurons of the mouse basolateral amygdala. Physiol. Rep. 4: e12664, https://doi.org/10.14814/phy2.12664.Suche in Google Scholar

Sporns, O. and Zwi, J.D. (2004). The small world of the cerebral cortex. Neuroinformatics 2: 145–162, https://doi.org/10.1385/ni:2:2:145.10.1385/NI:2:2:145Suche in Google Scholar

St George-Hyslop, F., Kivisild, T., and Livesey, F.J. (2022). The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front. Mol. Neurosci. 15: 1017144, https://doi.org/10.3389/fnmol.2022.1017144.Suche in Google Scholar

Steullet, P., Cabungcal, J., Monin, A., Dwir, D., O’donnell, P., Cuenod, M., and Do, K. (2016). Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr. Res. 176: 41–51, https://doi.org/10.1016/j.schres.2014.06.021.Suche in Google Scholar

Steullet, P., Cabungcal, J., Coyle, J., Didriksen, M., Gill, K., Grace, A., Hensch, T., LaMantia, A., Lindemann, L., Maynard, T., et al.. (2017). Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol. Psychiatr. 22: 936–943, https://doi.org/10.1038/mp.2017.47.Suche in Google Scholar

Sullivan, C.S., Mohan, V., Manis, P.B., Moy, S.S., Truong, Y., Duncan, B.W., and Maness, P.F. (2020). Developmental regulation of basket interneuron synapses and behavior through NCAM in mouse prefrontal cortex. Cereb. Cortex 30: 4689–4707, https://doi.org/10.1093/cercor/bhaa074.Suche in Google Scholar

Szocsics, P., Papp, P., Havas, L., Watanabe, M., and Maglóczky, Z. (2021). Perisomatic innervation and neurochemical features of giant pyramidal neurons in both hemispheres of the human primary motor cortex. Brain. Struct. Funct. 226: 281–296, https://doi.org/10.1007/s00429-020-02182-8.Suche in Google Scholar

Tan, B.L. (2009). Profile of cognitive problems in schizophrenia and implications for vocational functioning. Aust. Occup. Ther. J. 56: 220–228, https://doi.org/10.1111/j.1440-1630.2008.00759.x.Suche in Google Scholar

Tan, Y. and Kagan, J.C. (2019). Innate immune signaling organelles display natural and programmable signaling flexibility. Cell 177: 384–398. e311, https://doi.org/10.1016/j.cell.2019.01.039.Suche in Google Scholar

Tewari, B.P., Chaunsali, L., Campbell, S.L., Patel, D.C., Goode, A.E., and Sontheimer, H. (2018). Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat. Commun. 9: 4724, https://doi.org/10.1038/s41467-018-07113-0.Suche in Google Scholar

Uhlhaas, P.J. and Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11: 100–113, https://doi.org/10.1038/nrn2774.Suche in Google Scholar

van Berckel, B.N., Bossong, M.G., Boellaard, R., Kloet, R., Schuitemaker, A., Caspers, E., Luurtsema, G., Windhorst, A.D., Cahn, W., Lammertsma, A.A., et al.. (2008). Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatr. 64: 820–822, https://doi.org/10.1016/j.biopsych.2008.04.025.Suche in Google Scholar

Vascak, M., Jin, X., Jacobs, K.M., and Povlishock, J.T. (2018). Mild traumatic brain injury induces structural and functional disconnection of local neocortical inhibitory networks via parvalbumin interneuron diffuse axonal injury. Cereb. Cortex 28: 1625–1644, https://doi.org/10.1093/cercor/bhx058.Suche in Google Scholar

Vasistha, N.A., Pardo-Navarro, M., Gasthaus, J., Weijers, D., Müller, M.K., García-González, D., Malwade, S., Korshunova, I., Pfisterer, U., von Engelhardt, J., et al.. (2020). Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner. Mol. Psychiatr. 25: 2313–2329, https://doi.org/10.1038/s41380-019-0539-5.Suche in Google Scholar

Veeh, J., Kopf, J., Kittel-Schneider, S., Deckert, J., and Reif, A. (2017). Cognitive remediation for bipolar patients with objective cognitive impairment: a naturalistic study. Int. J. Bipolar Disord. 5: 1–13, https://doi.org/10.1186/s40345-017-0079-3.Suche in Google Scholar

Verret, L., Mann, E.O., Hang, G.B., Barth, A.M., Cobos, I., Ho, K., Devidze, N., Masliah, E., Kreitzer, A.C., Mody, I., et al.. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149: 708–721, https://doi.org/10.1016/j.cell.2012.02.046.Suche in Google Scholar

Wang, Y., Zhang, P., and Wyskiel, D.R. (2016). Chandelier cells in functional and dysfunctional neural circuits. Front Neural Circ. 10: 33, https://doi.org/10.3389/fncir.2016.00033.Suche in Google Scholar

Wang, Y., Shi, Y., and Wei, H. (2017). Calcium dysregulation in Alzheimer’s disease: a target for new drug development. J. Alzheimers Dis. Parkinsonism. 7, https://doi.org/10.4172/2161-0460.1000374.Suche in Google Scholar

Winland, C.D., Welsh, N., Sepulveda-Rodriguez, A., Vicini, S., and Maguire-Zeiss, K.A. (2017). Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur. J. Neurosci. 46: 2519–2533, https://doi.org/10.1111/ejn.13711.Suche in Google Scholar

Woo, T.-U., Whitehead, R.E., Melchitzky, D.S., and Lewis, D.A. (1998). A subclass of prefrontal γ-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl. Acad. Sci. 95: 5341–5346, https://doi.org/10.1073/pnas.95.9.5341.Suche in Google Scholar

Wu, S., Qi, C., Sima, W., Miao, H., Hu, E., Ge, J., Deng, M., Chen, A., Ye, W., and Xue, Q. (2024). Distinct functions of parvalbumin and somatostatin interneurons in the anterior cingulate cortex result in heterogeneity of social interaction impairments. Research Square [Preprint], https://doi.org/10.21203/rs.3.rs-3841366/v1.Suche in Google Scholar

Xia, F., Richards, B.A., Tran, M.M., Josselyn, S.A., Takehara-Nishiuchi, K., and Frankland, P.W. (2017). Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. Elife 6, https://doi.org/10.7554/elife.27868.Suche in Google Scholar

Yanagi, M., Joho, R., Southcott, S., Shukla, A., Ghose, S., and Tamminga, C. (2014). Kv3. 1-containing K+ channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs. Mol. Psychiatr. 19: 573–579, https://doi.org/10.1038/mp.2013.49.Suche in Google Scholar

Yang, J., Yang, X., and Tang, K. (2022). Interneuron development and dysfunction. The FEBS J. 289: 2318–2336, https://doi.org/10.1111/febs.15872.Suche in Google Scholar

Yao, Y. and Li, Q. (2024). The role of parvalbumin interneurons in autism spectrum disorder. J. Neurosci. Res. 102: e25391, https://doi.org/10.1002/jnr.25391.Suche in Google Scholar

Yau, J.O.-Y., Chaichim, C., Power, J.M., and McNally, G.P. (2021). The roles of basolateral amygdala parvalbumin neurons in fear learning. J. Neurosci. 41: 9223–9234, https://doi.org/10.1523/jneurosci.2461-20.2021.Suche in Google Scholar

Yeganeh, F., Knauer, B., Guimarães Backhaus, R., Yang, J.-W., Stroh, A., Luhmann, H.J., and Stüttgen, M.C. (2022). Effects of optogenetic inhibition of a small fraction of parvalbumin-positive interneurons on the representation of sensory stimuli in mouse barrel cortex. Sci. Rep. 12: 19419, https://doi.org/10.1038/s41598-022-24156-y.Suche in Google Scholar

Yizhar, O., Fenno, L.E., Prigge, M., Schneider, F., Davidson, T.J., O’shea, D.J., Sohal, V.S., Goshen, I., Finkelstein, J., Paz, J.T., et al.. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477: 171–178, https://doi.org/10.1038/nature10360.Suche in Google Scholar

Zaletel, I., Filipović, D., and Puškaš, N. (2016). Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far? Rev. Neurosci. 27: 397–409, https://doi.org/10.1515/revneuro-2015-0042.Suche in Google Scholar

Zallo, F., Gardenal, E., Verkhratsky, A., and Rodríguez, J.J. (2018). Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer’s disease mice. Neurosci. Lett. 681: 19–25, https://doi.org/10.1016/j.neulet.2018.05.027.Suche in Google Scholar

Zeng, C., Lu, Y., Wei, X., Sun, L., Wei, L., Ou, S., Huang, Q., and Wu, Y. (2024). Parvalbumin regulates GAD expression through calcium ion concentration to affect the balance of glu-GABA and improve KA-induced status epilepticus in PV-Cre transgenic mice. ACS Chem. Neurosci. 15: 1951–1966, https://doi.org/10.1021/acschemneuro.3c00600.Suche in Google Scholar

Zhang, L., Gao, Y.-Z., Zhao, C.-J., Xia, J.-Y., Yang, J.-J., and Ji, M.-H. (2023a). Reduced inhibitory and excitatory input onto parvalbumin interneurons mediated by perineuronal net might contribute to cognitive impairments in a mouse model of sepsis-associated encephalopathy. Neuropharmacology 225: 109382, https://doi.org/10.1016/j.neuropharm.2022.109382.Suche in Google Scholar

Zhang, P., Omanska, A., Ander, B.P., Gandal, M.J., Stamova, B., and Schumann, C.M. (2023b). Neuron-specific transcriptomic signatures indicate neuroinflammation and altered neuronal activity in ASD temporal cortex. Proc. Natl. Acad. Sci 120, https://doi.org/10.1073/pnas.2206758120.Suche in Google Scholar

Zhou, C., Zhou, Z., Han, Y., Lei, Z., Li, L., Montardy, Q., Liu, X., Xu, F., and Wang, L. (2018). Activation of parvalbumin interneurons in anterior cingulate cortex impairs observational fear. Sci. Bull. 63: 771–778, https://doi.org/10.1016/j.scib.2018.05.030.Suche in Google Scholar

Zhu, Y., Qiao, W., Liu, K., Zhong, H., and Yao, H. (2015). Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat. Commun. 6: 6802, https://doi.org/10.1038/ncomms7802.Suche in Google Scholar

Zonneveld, H.I., Roshchupkin, G.V., Adams, H.H.H., Gutman, B.A., van der Lugt, A., Niessen, W.J., Vernooij, M.W., and Ikram, M.A. (2019). High-dimensional mapping of cognition to the brain using voxel-based morphometry and subcortical shape analysis. J. Alzheimer. Dis. 71: 141–152, https://doi.org/10.3233/jad-181297.Suche in Google Scholar

Received: 2024-10-22
Accepted: 2024-12-30
Published Online: 2025-01-24
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0153/html
Button zum nach oben scrollen